

Preface

New Countdown Second Edition is a carefully structured and graded mathematics course, comprising eleven books for Classes Pre-Primary to Class 8. The pattern followed in the entire series ensures development in all areas of a child's growth through basic multi-focal knowledge, emphasising number skills and mathematical concepts.

The Step by Step Solution Guide is a comprehensive resource that complements the New Countdown series to provide a holistic framework within which students are able to understand, grasp, approach, and apply the learned mathematical concepts, and to successfully implement the objectives of the mathematics curriculum.

This guide highlights the patterns, approaches, functions, and relationships between the curriculum strands, so that the students can apply their mathematical knowledge and develop a holistic understanding of the subject that can then be translated into real-life application. The main objective of this guide is not to simply cross-reference the answers, but to guide the students through the thinking process upon approaching a mathematical problem, to reaching the correct answer. This guide therefore provides the extensive breakdown of not only solving the equation, but also the mental strategies, appropriate reasoning and formatting, and the ability to decipher what mathematical concepts can be applied to the particular question, in order to work towards the answer.

This in-depth breakdown of solving questions encompasses all the questions in each exercise, as well as the questions in the revision exercises. There are also helpful hints available in this guide that supplements a student's thinking process when approaching a certain problem. The helpful hints will help to avoid preemptive misconceptions that will be beneficial to students and teachers. They help guide the student towards the correct formula by effectively contextualising the mathematical concept and linking it to real-life application. The mathematical proofing, format and reasoning is in line with the assessment expectations.

Finally, apart from the step-by-step worked solutions themselves, the end of this guide also includes a direct answer key that can be used for cross-referencing purposes by the teacher. These answers correlate to the model paper in the Assessment Resource Pack.

The Step by Step Guide provides thorough insight and furthers one's understanding of what is expected of a student in an examination beyond simply arriving at the right answer. This guide helps ensure that the process comes from a place of deep understanding and reasoning of mathematical concepts by guiding the students' approach and thinking process during problem solving, and therefore reaching the desired answer.

(1) Operations on Sets
2) Real Numbers
(3) Squares and Square Roots, Cubes and Cube Roots
4) Proportions

Revision 1: Numbers
(5) Financial Arithmetic

Algebra: Laws of Indices/Exponents

Algebra: Polynomials
B) Algebra: Factorisation and Expansion48Revision 2: Algebra58
Linear Equations 63
Mensuration 78
Geometry: Congruence and Similarity 85
Practical Geometry and Transformation 86
Data Handling 98
Answers:
Model Assessment Papers 108

1
 Operations on Sets

Exercise 1

1. (i) $A \cup B$
(ii) $(A \cup B) \cup C$
(iii) $(A \cup B) \cap(A \cup C)$
(iv) common elements
(v) 2^{n}
2. (i) False

Reason: A set containing 3 elements has $2^{3}=8$ elements.
(ii) True
(iii) False

Reason: Power set is the set of all the subsets of a given set.
(iv) False

Reason: A super set contains all the elements of its subset and it contains at least one elements not present in subset.
(v) True
3. (i) The number of elements is 1
\therefore the number of subsets is $2^{n}=2^{1}=2$ \{\}, \{a\}

Helpful Hint

Null set is a subset of every set.
(ii) The number of elements is 2
\therefore the number of subsets is $2^{n}=2^{2}=4$ $\},\{\times\},\{y\},\{x, y\}$
(iii) The number of elements is 3
\therefore the number of subsets is $2^{3}=8$
\{ \} \{1\}, \{2\}, \{3\}, \{1, 2\} \{1,3\}, \{2, 3\}, \{1, 2, 3\}
(iv) There is no element.
\therefore number of subsets is $2^{0}=1$
(v) The number of elements is 4
\therefore the number of subsets is $2^{4}=16$
$\},\{a\},\{b\},\{c\},\{d\}$,
$\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}$,
$\{a, b, c\},\{a, b, d\},\{b, c, d\},\{c, d, a\}$,
$\{a, b, c, d\}$
(vi) There is only one element.
\therefore number of subsets is $2^{n}=2^{1}=2$
\{ \}, \{0\}
4. (i) $\{a, b, c\} \cap\{b\}=\{b\}$
only b is common in both the sets
(ii) $\{2,4,6,8\} \cap\{1,2,3,4,5\}=\{2,4\}$
(iii) \{the vowels in the English alphabet\} \cap \{the first four letters of the English alphabet
$=\{a, e, i, o, u\} \cap\{a, b, c, d\}$
$=\{\mathrm{a}\}$
because only a is common in both sets
(iv) $\{c, a, t\} \cap\{d, o, g\}=\{ \}$

There is are no common elements in the two sets.
(v) $\{3,6,9,12\} \cap\{2,3,4,5,6\}=\{3,6\}$
(vi) $\{O\} \cap\{E\}=\{ \}$

There are no common elements in the two sets.
5. (i) $\{a, c, d\} \cup\{a, b, c, d\}=\{a, b, c, d\}$

Write all the elements of both the sets.

Helpful Hint

Write common elements only once.
(ii) $\{3,8,4\} \cup \phi=\{3,8,4\}$

Helpful Hint
ϕ represents empty or null set.
(iii) $\{3,6,9,12\} \cup\{2,4,6,8\}$ $=\{2,3,4,6,8,9,12\}$
6. (i) $\{0,2,4,6,8\} \cup\{1,2,3,8\}$ $=\{0,1,2,3,4,6,8\}$
(ii) $\{0,4,6,8\} \cup\{4,5,67\}$
$=\{0,2,4,5,6,7,8\}$
(iii) $\{1,2,3,8\} \cup\{4,5,6,7\}$
$=\{1,2,3,4,5,6,7,8\}$
(iv) $\{1,2,3,8\} \cup\{0,1,2, \ldots, 9\}$
$=\{0,1,2, \ldots, 9\}$
(v) $\{0,2,4,6,8\} \cup\}$
$=\{0,2,4,6,8\}$
(vi) $\{0,2,4,6,8\} \cap\{1,3,5,7,9\}$ $=\{ \}$ or ϕ
(vii) $\{1,3,5,7,9\} \cap\{1,2,3,8\}$ $=\{1,3\}$
(viii) $\{1,2,3,8\} \cap\{4,5,6,7\}$ $=\{ \}$ or ϕ
(ix) $\{1,3,5,7,9\} \cap\}$
$=\{ \}$ or ϕ
(x) $\{1,3,5,7,9\} \cap\{0,1,2, \ldots, 9)$ $=\{1,3,5,7,9\}$
7. (i) $A^{\prime}=\{1,2,3,4,5,6,7\}-\{1,2,5,7\}$ $A^{\prime}=\{3,4,6\}$
(ii) $B^{\prime}=\{1,2,3,4,5,6,7\}-\{1,3,6,7\}$ $B^{\prime}=\{2,4,5\}$
(iii) $\mathrm{A} \cap \mathrm{B}=\{1,2,5,7\} \cap\{1,3,6,7\}$
$=\{1,7\}$
$(A \cap B)^{\prime}=\{1,2,3,4,5,6,7\}\{1,7\}$
$=\{2,3,4,5,6\}$
(iv) $\mathrm{A} \cup \mathrm{B}=\{1,2,5,7\} \cup\{1,3,6,7\}$
$=\{1,2,3,5,6,7\}$
$(A \cup B)^{\prime}=\{1,2,3,4,5,6,7\}-\{1,2,3$,
$5,6,7\}$
$=\{4\}$
(v) $A^{\prime}=\{1,2,3,4,5,6,7\}-\{1,2,5,7\}$
$=\{3,4,6\}$
$B^{\prime}=\{1,2,3,4,5,6,7\}-\{1,3,6,7\}$
$=\{2,4,5\}$
$A^{\prime} \cup B^{\prime}=\{3,4,6\} \cup\{2,4,5\}$
$=\{2,3,4,5,6\}$
(vi) $A^{\prime}=\{3,4,6\}$
$B^{\prime}=\{2,4,5\}$
$A^{\prime} \cap B^{\prime}=\{3,4,6\} \cap\{2,4,5\}$
$=\{4\}$
8. (a) (i) $\{1,3\} \cup\{2,4\} \cup\{5\}=\{1,2,3,4,5\}$
(ii) $A \cup B=\{1,3\} \cup\{2,4\}=\{1,2,3,4\}$
$(A \cup B) \cap C=\{1,2,3,4\} \cap\{5\}=\{ \}$
(iii) $A \cap B=\{1,3\} \cap\{2,4\}=\{ \}$
$(A \cap B) \cup C=\{ \} \cup\{5\}=\{5\}$
(iv) $A \cap B=\{1,3\} \cap\{2,4\}=\{ \}$
$(A \cap B) \cap C=\{ \} \cap\{5\}=\{ \}$
(v) $\mathrm{B} \cap \mathrm{C}=\{2,4\} \cap\{5\}=\{ \}$ $A \cup(B \cap C)=\{1,3\} \cup\{ \}=\{1,3\}$
(vi) $B \cup C=\{2,4\} \cup\{5\}=\{2,4,5\}$
$A \cap(B \cup C)=\{1,3\} \cap\{2,4,5\}=\{ \}$
(b) (i)

(ii)

(iii)

(iv)

(v)

(vi)

(c) (i) LHS
$A^{\prime} \cup B^{\prime}$
$A^{\prime}=\{1,2,3,4,5\}-\{1,3\}=\{2,4,5\}$
$B^{\prime}=\{1,2,3,4,5\}-\{2,4\}=\{1,3,5\}$
$A^{\prime} \cup B^{\prime}=\{1,2,3,4,5\}$
RHS
$(A \cap B)^{\prime}$
$A \cap B=\{1,3\} \cap\{2,4\}=\{ \}$
$(A \cap B)^{\prime}=\{1,2,3,4,5\}-\{ \}=\{1,2,3,4,5\}$
\therefore LHS $=$ RHS
Thus $A^{\prime} \cup B^{\prime}=(A \cap B)^{\prime}$ is proved
(ii) LHS
$A^{\prime} \cap B^{\prime}=\{2,4,5\} \cap\{1,3,5\}=\{5\}$
RHS
(A $\cup B)^{\prime}$
$A \cup B=\{1,3\} \cup\{24\}=\{1,2,3,4\}$
$(A \cup B)^{\prime}=\{1,2,3,4,5\}-\{1,2,3,4\}=\{5\}$
\therefore LHS $=$ RHS
Thus $A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}$ is proved
9. (i) $\mathrm{A} \cap \mathrm{B}=\{6,8\}$ shows the common elements. That means 6 and 8 are elements of set B.
$A \cup B=\{2,4,5,6,7,8\}$ shows all the elements of A and B both.
The elements, 5 and 7 do not belong to set A. This shows that 5 and 7 are also the elements of set B.
$\therefore B=\{5,6,7,8\}$
(ii) $A \cap B=\{3\}$
\Rightarrow Set B only has 3 as an element.
$A \cup B=\{1,2,3,4\}$
Since 1 and 2 do not belong to set A
$\therefore B=\{1,2,3\}$
10. (i) $=$
(Commutative property)
(ii) =

Since ϕ is a null set, it does not have any element hence its union with any other set gives the set itself as a result.
(iii) \neq

The result will be the set A.
(iv) $=$

Since the elements are written only once if they are common is both the sets. Thus the resultant will be the set A itself.
(v) $=$

Since union and intersection both gives the same elements as set B. Thus both the sets are equal.
11. Commutative property of union of three sets
$A \cup(B \cup C)=(A \cup B) \cup C$
Consider LHS
$A \cup(B \cup C)$
$(B \cup C)=\{3,5,6\} \cup\{5,7,9\}=\{3,5,6,7,9\}$
$A \cup(B \cup C)=\{2,3,4\} \cup\{3,5,6,7,9\}$ $=\{2,3,4,5,79\}$
RHS
$(A \cup B) \cup C$
$A \cup B=\{2,3,4\} \cup\{3,5,6\}=\{2,3,4,5,6\}$
$(A \cup B) \cup C=\{2,3,4,5,6\} \cup\{5,7,9\}$

$$
=\{2,3,4,5,6,7,9\}
$$

\therefore LHS $=$ RHS
Thus associative property of union is proved.
12. $A \cap(B \cap C)=(A \cap B) \cap C$

LHS
$B \cap C=\{p, q, r, s\} \cap\{n, o, p, q\}$ $=\{p, q\}$
$A \cap(B \cap C)=\{m, n, o\} \cap\{p, q]$ $=\{ \}$
RHS
$A \cap B=\{m, n, o\} \cap\{p, q, r, s\}=\{ \}$
$(A \cap B) \cap C=\{ \} \cap\{n, o, p, q\}$ $=\{ \}$
\therefore LHS $=$ RHS
Thus the associative property of intersection is proved.
13. First Law
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
LHS

$$
\begin{aligned}
A \cup B & =\{1,2,3,4,\} \cup\{3,4,5,6\} \\
& =\{1,2,3,4,5,6\} \\
(A \cup B)^{\prime} & =\{1,2,3,4,5,6\}-\{1,2,3,4,5,6\} \\
& =\{ \}
\end{aligned}
$$

RHS
$A^{\prime}=\{1,2,3,4,5,6\}-\{1,2,3,4\}=\{5,6\}$
$B^{\prime}=\{1,2,3,4,5,6\}-\{3,4,5,6\}=\{1,2\}$
$A^{\prime} \cap B^{\prime}=\{5,6\} \cap\{1,2\}=\{ \}$
\therefore LHS $=$ RHS
Thus De Morgan's first law is proved.

2nd Law
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
LHS
$A \cap B=\{1,2,3,4\} \cap\{3,4,5,6\}$
$=\{3,4\}$
$(A \cap B)^{\prime}=\{1,2,3,4,5,6\}-\{3,4\}$

$$
=\{1,2,5,6\}
$$

RHS

$$
\begin{aligned}
& A^{\prime}=\{5,6\} \quad B^{\prime}=\{1,2\} \\
& \begin{aligned}
A^{\prime} \cup B^{\prime} & =\{5,6\} \cup\{1,2\} \\
& =\{1,2,5,6\}
\end{aligned} \\
& \begin{aligned}
\therefore \text { LHS } & =\text { RHS }
\end{aligned}
\end{aligned}
$$

Thus De Morgan's 2nd law is proved.
14. (a) Swimming $=\{B, E, F, H\}$

$$
\begin{aligned}
& \text { Coding }=\{A, C, F, G\} \\
& \text { Painting }=\{B, C, D, F\}
\end{aligned}
$$

(b) B, F
(f) F

Multiple Choice Questions 1

1. A

All other sets have elements other than the elements of universal set.
2. D

Integers include negative numbers, positive numbers and zero, whereas whole numbers include only positive numbers and zero. Even numbers consist of multiples of 2 only, and odd numbers are the numbers other than multiples of 2 . Hence, the set of integers has all the members of whole numbers, even numbers and odd numbers sets.
3. B
$2^{n}=2^{4}=16$
4. C

Options A and D are not the subset of A as they have other element than those in set A. Option B is improper subset of A.
5. C

None of the other options satisfy De Morgan's law.

Real Numbers

Exercise 2A

1. $45 \longrightarrow$ has two significant figures because all non zero digits are significant.
$0.046 \longrightarrow$ has two significant figures because all leading zeros are non significant figures.
$7.4220 \longrightarrow$ has five significant figures because the zeros after non zero digits after decimal are significant.
$5002 \longrightarrow$ has four significant figures because all zeros between two non-zero digits are significant.
$3800 \longrightarrow$ has two significant figures because the zeros at the end are not significant.
The zeros in the beginning
are non-significant where
as the zeros between
two non-zero digits are
significant.

Exercise 2B

1. (i) $2-7.2=5.2$
$|-5.2|=5.2$
2.

Numbers	Correct to 5 Significant figures	Correct to 3 Significant figures	Correct to 2 Significant figures	
i)	10.0055	10.006	10.0	10
ii)	473.018	473.02	473	47
iii)	31.0012	31.001	31.0	31
iv)	50.0125	50.013	50.0	50
v)	0.974002	0.97400	0.974	0.97

4. (i) 49

Since 6 is greater than 5 , the digit 8 will round up to 9 .
(ii) 0.005

Since 3 is less than 5 , hence the required digit will remain the same.
(iii) 390200

Since the digit next to $4^{\text {th }}$ significant figure is 5 , the digit will round up.
(iv) 535.01

Since the last digit is 8 , the digit will round up.
5. (i) $\frac{1}{7}$
(ii) $-\frac{1}{2.5}$
(iii) $\frac{1}{\sqrt{3}}$
(iv) $\frac{11}{6}$
(v) $-\sqrt{2}$
(vi) $\frac{1}{347.99}$
6. (i) -29
(ii) 7875
(iii) $-\frac{47}{50}$
(iv) $\sqrt{7}$
(v) 6712.04
(vi) $-\frac{3}{10}$
7. (i) $15,30,2.5$

Associative property of addition states that:
$a+(b+c)=(a+b)+c$
$15+(30+2.5)=(15+30)+2.5$

Helpful Hint

' To prove the law the left hand side should be 'equal to the right hand side

LHS

$$
15+(30+2.5)
$$

$=15+32.5$
$=47.5$
RHS
$(15+30)+2.5$
$=45+2.5$
$=47.5$
Since LHS = RHS
Hence, the associative property of addition is proved.
(ii) $\frac{3}{5}, 24, \quad 11$

LHS

$$
\frac{3}{5}+(24+11)
$$

$=\frac{3}{5}+35=\frac{3+175}{5}$
$=\frac{178}{5}=35 \frac{3}{5}$
RHS
$\left(\frac{3}{5}+24\right)+11$
$=\frac{3+120}{5}+11=\frac{123}{5}+11$
$=\frac{123+55}{5}=\frac{178}{5}=35 \frac{3}{5}$
Since LHS = RHS
Hence, the associative property of addition is proved.
8. (i) $1.5,3,8$

Distributive property of multiplication over addition states that:
$a \times(b+c)=a \times b+a \times c$
LHS
$1.5 \times(3+8)=1.5 \times 11=16.5$
RHS
$1.5 \times 3+15 \times 8=4.5+12.0=16.5$
Since, LHS = RHS
Hence, distributive property of multiplication over addition is proved.
(ii) $2, \frac{4}{15}, \frac{7}{15}$
$2 \times\left(\frac{4}{15}+\frac{7}{15}\right)=2 \times \frac{4}{15}+2 \times \frac{7}{15}$
LHS
$2 \times\left(\frac{4}{15}+\frac{7}{15}\right)=2 \times \frac{11}{15}=1 \frac{7}{15}$
RHS
$2 \times \frac{4}{15}+2 \times \frac{7}{15}=\frac{8}{15}+\frac{14}{15}=\frac{22}{15}=1 \frac{7}{15}$
Since, LHS = RHS
Hence, distributive law of multiplication over addition is proved.
9. (i) $100,25,3000$

Associative property of multiplication states that:
$a \times(b \times c)=(a \times b) \times c$
$100 \times(25 \times 3000)=(100 \times 25) \times 3000$

LHS
$100 \times(25 \times 3000)=100 \times 75000=7500000$ RHS
$(100 \times 25) \times 3000=2500 \times 3000=7500000$
Since, LHS = RHS
Hence, associative property of multiplication is proved.
(ii) $-5 \times\left(20 \times \frac{4}{5}\right)=(-5 \times 20) \times \frac{4}{5}$

LHS
$-5 \times\left(20 \times \frac{4}{5}\right)=-5 \times 16=-80$
RHS
$(-5 \times 20) \times \frac{4}{5}=-100 \times \frac{4}{5}=-80$
Since, LHS = RHS
Hence, associative property of multiplication is proved.
10. (i) $7 \times(-4.5+12)=7 \times(-4.5)+7 \times 12$

LHS
$7 \times(-4.5+12)=7 \times 7.5=52.5$
RHS
$7 \times(-4.5)+7 \times 12=-31.5+84=52.5$
Since LHS $=$ RHS
Hence, distributive property of
multiplication over addition is proved.
(ii) $\frac{1}{3} \times\left(4+\frac{2}{3}\right)=\frac{1}{3} \times 4+\frac{1}{3} \times \frac{2}{3}$

LHS
$\frac{1}{3} \times\left(4+\frac{2}{3}\right)=\frac{1}{3} \times \frac{14}{3}=\frac{14}{9}=1 \frac{5}{9}$
RHS
$\frac{1}{3} \times 4+\frac{1}{3} \times \frac{2}{3}=\frac{4}{3}+\frac{2}{9}=\frac{12+2}{9}$
$=\frac{14}{9}=1 \frac{5}{9}$
Since, LHS = RHS
Hence, distributive property of multiplication over addition is proved.
11. (i) $\left|-\frac{2}{5}\right|=\frac{2}{5} z$
(ii) $|-2(4.62)|=|-9.24|=9.24$
(iii) $|\sqrt{2}|=\sqrt{2}$
12. Saima had 593.66 cm long cloth. She cut off 28.5 cm from it. The length of remaining cloth is
$593.66 \mathrm{~cm}-28.5 \mathrm{~cm}=565.16 \mathrm{~cm}$
Approximation upto 4 significant figures 565.2 cm
13. Maheen jogged 2.23 km

Faheem jogged $3.25 \times 2.23 \mathrm{~km}$
$=7.2475 \mathrm{~km}$
Faheem jogged approximately 7.24 km
14. $\frac{1}{4}+\frac{1}{4}+\frac{3}{8}$
$=\frac{2+2+3}{8}=\frac{7}{8}$
15. $\frac{3}{5}+\frac{1}{4}$
$=\frac{12+5}{20}=\frac{17}{20}$
Haris moved $\frac{17}{20}$ of his house lawn left to now is $1-\frac{17}{20}=\frac{20-17}{20}$
$=\frac{3}{20}$
16. We have radius $=35 \mathrm{~cm}$

Take radius $=34.5 \mathrm{~cm}, 35 \mathrm{~cm}$ and 35.5 cm
Area of circle $=\pi r^{2}$
$r=34.5 \mathrm{~cm}$
Area of circle $=\frac{22}{7} \times 345$
$=108.43 \mathrm{~cm}^{2}$
$r=35 \mathrm{~cm}$
Area of circle $=\frac{22}{7} \times 35$
$=110 \mathrm{~cm}^{2}$
$r=35.5 \mathrm{~cm}$
Area of circle $=\frac{22}{7} \times 35.5$
$=111.57 \mathrm{~cm}^{2}$
If radius $=34.5 \mathrm{~cm}^{2}$, then the error is
$110-108.43=1.57 \mathrm{~cm}^{2}$
If radius $=35.5 \mathrm{~cm}^{2}$, then the error is
$111.57-110=1.57 \mathrm{~cm}^{2}$

Multiple choice question 2

1. B
2. B
3. C
4. C 5 D

Squares and Square Roots Cubes and Cube Roots

Exercise 3A

1. (i) radical
(ii) two
(iii) less
(iv) division
(v) 4.4
2. (i) False

100 is a perfect square but 200 is not a perfect square.
(ii) True
(iii) True

3. (i)

$$
\begin{aligned}
& \\
& \therefore \sqrt{22.09}=4.7
\end{aligned}
$$

(ii)

2.71	
2	$\overline{7.34} \overline{41}$
+2	$-4 \longrightarrow 2 \times 2$
47	334
+ 7	$-329 \longrightarrow 47 \times 7$
541	541
	$-541 \longrightarrow 541 \times 1$
	0

$\therefore \sqrt{6.3441}=2.71$
(iii)

(iv)

18.47	
1	$\overline{341.14} \overline{09}$
+1	$-1 \longrightarrow 1 \times 1$
-28	241
+ 8	$-224 \longrightarrow 28 \times 8$
364	1741
+ 4	$-1456 \longrightarrow 364 \times 4$
3687	25809
	$-25809 \longrightarrow 3687 \times 7$
	0

$$
\therefore \sqrt{341.1409}=18.47
$$

(v)

$\therefore \sqrt{0.00822649}=0.0907$
4. (i)
$\sqrt{2 \frac{9}{49}}=\sqrt{\frac{107}{49}}=\sqrt{\frac{107}{7 \times 7}}=\sqrt{\frac{107}{7}}$

10.34	
1	$1 \overline{07}$
+1	-1
20	007
+0	$-\quad 0$
203	700
+3	$-\quad 609$
2064	
	$-\quad 8100$
	8256

$$
\therefore \sqrt{\frac{107}{7}}=\frac{10.34}{7}
$$

$$
\begin{array}{r}
1.477 \\
\longdiv { 1 0 . \overline { 3 4 } }
\end{array}
$$

$$
\begin{array}{r}
-7 \\
\hline 33
\end{array}
$$

$$
\begin{array}{r}
-\quad 28 \\
\hline 54
\end{array}
$$

$$
\begin{array}{r}
-\quad 49 \\
\hline 50
\end{array}
$$

$$
\begin{array}{r}
-\quad 49 \\
\hline
\end{array}
$$

$$
\therefore \sqrt{2 \frac{9}{49}}=1.48
$$

(ii)

$$
\begin{aligned}
& \sqrt{7 \frac{9}{16}} \\
& =\sqrt{\frac{121}{16}} \\
& =\frac{11}{4} \\
& =2.75 \text { or } 2 \frac{3}{4}
\end{aligned}
$$

(iii) $\sqrt{6 \frac{145}{256}}=\sqrt{\frac{1681}{256}}$

41	
	$\overline{16} \overline{81}$ +4 $\mathbf{1 6}$
81	81
	$-\quad 81$
	0

$$
\therefore \sqrt{1681}=41
$$

$$
\begin{array}{r|r}
& 16 \\
\cline { 2 - 3 } & \overline{2} \overline{56} \\
+1 & -1 \\
\hline 26 & 156 \\
6 & -156 \\
\hline & 0
\end{array}
$$

$$
\therefore \sqrt{256}=16
$$

$$
\text { Thus } \begin{aligned}
\sqrt{\frac{1681}{256}} & =\frac{41}{16} \\
& =2.5625 \text { or } 2 \frac{9}{16}
\end{aligned}
$$

(iv) $\sqrt{9 \frac{67}{121}}=\sqrt{\frac{1156}{121}}$

\[

\]

$$
\therefore \sqrt{1156}=34
$$

$$
\sqrt{121}=11 \text { or } 3 \frac{1}{11}
$$

(v) $\sqrt{\frac{0.324}{72.9}}$

0.566	
5	$0 . \overline{32} \overline{4}$
+5	-25
106	740
+6	-636
1129	10400
	$-\quad 10161$
	239

$\sqrt{0.324}=0.566$

8.538	
8	$\overline{72} . \overline{9}$
+8	-64
165	890
+5	-825
1703	6500
+3	-5109
17068	139100
	-136544

$\sqrt{72.9}=8.538$
$\therefore \sqrt{\frac{0.324}{72.9}}=\frac{0.566}{8.538}=0.066$
(vi)

$$
\begin{aligned}
& \sqrt{\frac{6}{8 \frac{1}{6}}}=\sqrt{\frac{6}{\frac{49}{6}}} \\
& =\sqrt{\frac{6 \times 6}{49}}=\sqrt{\frac{36}{49}} \\
& =\sqrt{\frac{6 \times 6}{7 \times 7}}=\frac{6}{7}
\end{aligned}
$$

5. (i) $\sqrt{2}$

	1.414
	$2 . \overline{00} \overline{00}$
+1	-1
24	100
+4	-96
281	400
+1	-281
2824	11900
	-11296
	604

$$
\therefore \sqrt{2}=1.414
$$

(ii) $\sqrt{\frac{1}{3}}=\sqrt{0.3333} 3$

	0.577
	$0 . \overline{33} \overline{33}$
+5	-25
107	833
+7	-749
1147	8400
	$-\quad 8029$
	371

$$
\therefore \sqrt{\frac{1}{3}}=0.577
$$

$$
\begin{array}{r}
0.3333 \\
\hline \begin{array}{r}
10 \\
-\quad 9 \\
\hline 1
\end{array}
\end{array}
$$

(iii) $\sqrt{0.1}$

	0.316
	$0 . \overline{10}$
+3	-9
61	100
+1	$-\quad 61$
626	3900
	$-\quad 3756$
	144

$\therefore \sqrt{0.1}=0.316$
(iv)

$\sqrt{1+(0.021)^{2}}$	
$\sqrt{1+0.000441}=\sqrt{1.000441}$	
$\sqrt{\frac{1000441}{1000000}}=\sqrt{\frac{1000441}{1000}}$	
	1000.42
1 +1	$\begin{aligned} & 1 \overline{00} \overline{04} \overline{41} \\ & -1 \end{aligned}$
20	000
+ 0	- 0
200	004
+ 0	- 0
2000	441
+ 0	- 0
20004	44100
+ 4	40004
200082	409600
	400164
	9436
$\therefore \sqrt{\frac{1000441}{1000}}=\frac{1000.42}{1000}$	
$=100042$	

(v)

$$
\begin{aligned}
& \sqrt{\sqrt{32}-\sqrt{128}+\sqrt{50}} \\
& \sqrt{32}=?
\end{aligned}
$$

5.657

5.657	
	32
+5	-25
106	700
+6	-636
1125	6400
+5	$-\quad 5625$
11306	
	$-\quad 77500$

$\therefore \sqrt{32}=5.656$
$\therefore \sqrt{128}=11.313$
$\sqrt{50}=$?

7.071	
	50
+7	-49
140	100
+0	-0
1407	10000
+7	-
14141	9849
	$-\quad 15100$

$\therefore \sqrt{50}=7.071$
$\sqrt{\sqrt{32}-\sqrt{128}+\sqrt{50}}$
$=\sqrt{5.656-11.313+7.071}=\sqrt{1.414}$

	1.189
	$1 . \overline{41} \overline{4}$
+1	-1
21	041

+1	-21
228	2040
+8	-
2369	21624
	$-\quad 21321$

$$
\begin{aligned}
& \sqrt{1.414}=1.189 \\
& \therefore \sqrt{\sqrt{32}+\sqrt{128}+\sqrt{50}}=1.189
\end{aligned}
$$

(vi) $\sqrt{\frac{17}{25}}=\frac{\sqrt{17}}{\sqrt{5 \times 5}}=\frac{\sqrt{17}}{5}$

4.123	
4	17
+4	-16
81	100
+1	$-\quad 81$
822	1900
+2	$-\quad 1644$
8243	25600
	$-\quad 24729$
	871

$$
\therefore \sqrt{\frac{17}{25}}=\frac{4.123}{5}=0.824
$$

(vii) $\sqrt{1+0.002116}=\sqrt{1.002116}$

1.001	
1	$1 . \overline{00} \overline{21} \overline{16}$
+1	-1
20	00
+ 0	- 0
200	21
+ 0	- 0
2001	2116
	- 2001
	115

$\therefore \sqrt{1+0.002116}=1.001$
6. (i)

$$
\sqrt{\frac{9}{\frac{2}{2}}}+\sqrt{\frac{49}{\frac{4}{9}}}=\sqrt{\frac{9}{2 \times 2}}+\sqrt{\frac{49}{4 \times 9}}
$$

Helpful Hint

$$
\frac{9}{2} \div 2=\frac{9}{2} \times \frac{1}{2}
$$

$$
=\sqrt{\frac{9}{4}}+\sqrt{\frac{49}{36}}=\frac{3}{2}+\frac{7}{6}
$$

$$
=\frac{9 \times 7}{6}+\frac{16}{6}=\frac{8}{3}=2 \frac{2}{3}
$$

(ii) $\sqrt{\frac{\frac{16}{5}}{5}}+\sqrt{\frac{25}{\frac{8}{8}}}+\sqrt{\frac{49}{\frac{10}{10}}}$
$=\sqrt{\frac{16}{5 \times 5}}+\sqrt{\frac{25}{8 \times 8}}-\sqrt{\frac{49}{10 \times 10}}$
$=\frac{4}{5}-\frac{5}{8}-\frac{7}{10}$
$=\frac{32+25-28}{40}=\frac{29}{40}$
7. Let x and $3 x$ be the required numbers.
$(x)(3 x)=9 \frac{18}{25}$
$3 x^{2}=\frac{243}{25}$
$x^{2}=\frac{243}{25 \times 3^{81}}=\frac{81}{25}$
$x^{2}=\frac{81}{25}$
Take square root on both the sides.
$\sqrt{x^{2}}=\sqrt{\frac{81}{25}}$
$x^{2}=\sqrt{\frac{9 \times 9}{5 \times 5}}$
$x=\frac{9}{5}=1 \frac{4}{5}$
$3 x=\frac{3 \times 9}{5}=\frac{27}{5}=5 \frac{2}{5}$
\therefore The two numbers are
$1 \frac{4}{5}$ and $5 \frac{2}{5}$
8.

Helpful Hint

Product of HCF and LCM of two numbers is equal to the product of those two numbers.
$\mathrm{HCF} \times \mathrm{LCM}=5 \frac{5}{64}$

$$
\begin{aligned}
& 3 \frac{1}{4} \times \text { LCM }=5 \frac{5}{64} \\
& \frac{13}{4} \times \text { LCM }=\frac{325}{64} \\
& \frac{13}{4} \times \text { LCM }=\frac{325}{64} \\
& \text { LCM }=\frac{3 \frac{25}{64}}{16} \times \frac{\frac{1}{13,}}{13} \\
& \text { LCM }=\frac{25}{16} \\
& \sqrt{\text { LCM }}=\sqrt{\frac{25}{16}} \\
& =\sqrt{\frac{5 \times 5}{4 \times 4}} \\
& = \pm \frac{5}{4}= \pm 1 \frac{1}{4}
\end{aligned}
$$

9.

$$
\begin{aligned}
& \sqrt{944.578756} \\
& \sqrt{\frac{944578756}{1000000}}= \pm \frac{\sqrt{\frac{944578756}{1000}}}{l}
\end{aligned}
$$

\[

\]

$$
\therefore \pm \frac{\sqrt{944578756}}{1000}= \pm \frac{30734}{1000}
$$

$$
= \pm 30.734
$$

10. Area of a square $=l^{2}$
$l^{2}=331.24$ sq. metres
Take square root to find the length of each side

$$
\begin{aligned}
& \sqrt{l^{2}}=\sqrt{331.24} \\
& l=\sqrt{\frac{33124}{100}}=\frac{\sqrt{33124}}{10}
\end{aligned}
$$

\[

\]

$\therefore l=\frac{182}{10}=18.2$
Perimeter $=4 l=4 \times 18.2=72.8$ metres
11. Area of a square $=105$ square metres

$$
l^{2}=105
$$

Take square root on both the sides.

$$
\sqrt{l^{2}}=\sqrt{105}
$$

10.246	
1	$1 \overline{05}$
+1	- 1
20	05
+0	- 0
202	500
+2	- 404
2044	9600
+ 4	- 8176
20486	142400
	122916
	18484

$\therefore l=10.246$

$$
=10.25 \mathrm{~m}
$$

12. Area of a square $=\frac{289}{64}$ square metres

$$
\begin{aligned}
l^{2} & =\frac{289}{64} \\
\sqrt{l^{2}} & =\sqrt{\frac{289}{64}} \\
l & =\frac{\sqrt{17 \times 17}}{\sqrt{8 \times 8}}=\frac{17}{18} \\
& =2 \frac{1}{8} \mathrm{~m} \text { or } 2.125 \mathrm{~m}
\end{aligned}
$$

13. Area of square $=4 \mathrm{~m}^{2}$
$4 \mathrm{~m}^{2}=40000 \mathrm{~cm}^{2}$

Exercise 3B

1. (i) 3
(ii) perfect cube
(iii) 9
(iv) $3^{3}=27$
(v) Index
2. (i) True

Even numbers are multiples of 2 . So the cube of any even number is also a multiple of 2 .
(ii) False

Lets consider a natural number n

$$
\begin{aligned}
(-n)^{3} & =(-n) \times(-n) \times(-n) \\
& =+n^{2} \times(-n)=-n^{3}
\end{aligned}
$$

\therefore cube of a negative number is always negative.
(iii) True
$6 \times 6 \times 6=216$
(iv) False
$=\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}$
$\therefore \sqrt[3]{\frac{a}{b}} \neq \sqrt[3]{a} \times \sqrt[3]{a}$
(v) True

Because $6^{3}=216, \quad 7^{3}=343$ and
250 lies between 216 and 343 .
3. (i)

3	729
3	243
3	81
3	27
3	9
3	3
	1

The prime factors of 729 are
$3 \times 3 \times 3 \times 3 \times 3 \times 3$
$=3^{3} \times 3^{3}=(3 \times 3)^{3}$
$=9^{3}$
The prime factors of 729 can be grouped into triplets of equal factors
$\therefore 729$ is a perfect cube.
(ii)

	2700
2	1350
3	675
3	225
3	75
5	25
5	5
	1

The prime factors of 2700 are
$2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5=2^{2} \times 3^{3} \times 5^{2}$
Its prime factors can not be grouped into triplets.
$\therefore 2700$ is not a perfect cube.
(iii)

	27000
2	13500
2	6750
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

The prime factors are
$2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5$
$=2^{3} \times 3^{3} \times 5^{3}=(2 \times 3 \times 5)^{3}=30^{3}$
The prime factors of 27000 can be grouped into triplets of equal factors.
$\therefore 27000$ is a perfect cube.
(iv)

	34128
2	17064
2	8532
2	4266
3	2133
3	711
3	237
79	79
	1

Prime factors of 34128 are
$2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 79$
These prime factors can not be grouped into triplet of equal factors. $\therefore 34128$ is not a perfect cube.
4.

2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

$$
\begin{aligned}
864 & =2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \\
& =2^{3} \times 2^{2} \times 3^{3}
\end{aligned}
$$

One more 2 is required to make another triplet of 2.

Multiply 864 by 2 .

$2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$
This is a perfect cube.
Thus the required smallest integer is 2 .
5.

	13500
2	6750
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

$13500=2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5$
3 and 5 occur thrice but 2 occurs only twice.
$2 \times 2=4$
Divide 13500 by 4
$\therefore 3 \times 3 \times 3 \times 5 \times 5 \times 5=3375$
This is a perfect cube.
The required smallest integer is 4 .
6. (i)

	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

$$
\begin{aligned}
\sqrt[3]{5832} & =\sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3} \\
& =\sqrt[3]{2^{3} \times 3^{3} \times 3^{3}} \\
& =\sqrt[3]{18^{3}} \\
& =18
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \\
& \sqrt[3]{9261}=\sqrt[3]{3 \times 3 \times 3 \times 7 \times 7 \times 7} \\
& =\sqrt[3]{3^{3} \times 7^{3}} \\
& =\sqrt[3]{21^{3}} \\
& =21 \\
& \text { (iii) } \\
& \sqrt[3]{21952}=\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 7 \times 7} \\
& =\sqrt[3]{2^{3} \times 2^{3} \times 7^{3}} \\
& =\sqrt[3]{28^{3}} \\
& =28 \\
& \text { (iv) } \\
& \sqrt[3]{42875}=\sqrt[3]{5 \times 5 \times 5 \times 7 \times 7 \times 7} \\
& =\sqrt[3]{5^{3} \times 7^{3}} \\
& =\sqrt[3]{35^{3}} \\
& =35 \\
& \text { (v) } \\
& \sqrt[3]{74088}=\sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 7 \times 7} \\
& =\sqrt[3]{2^{3} \times 2^{3} \times 7^{3}} \\
& =\sqrt[3]{42^{3}} \\
& =42 \\
& \text { (vi) } \\
& \sqrt[3]{274625}=\sqrt[3]{5 \times 5 \times 5 \times 13 \times 13 \times 13} \\
& =\sqrt[3]{5^{3} \times 13^{3}} \\
& =\sqrt[3]{65^{3}} \\
& =65
\end{aligned}
$$

7. Volume of a cube $=l^{3}$
$l^{3}=46656$ cubic metres
$l=\sqrt[3]{46656}$

	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

$\sqrt[3]{46656}=$
$\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$
$=\sqrt[3]{2^{3} \times 2^{3} \times 3^{3} \times 3^{3}}$
$=\sqrt[3]{36^{3}}$
= 36 metres
8. (i)

	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

$$
\begin{aligned}
\sqrt[3]{512} & =\sqrt[3]{2 \times 2 \times 2} \\
& =\sqrt[3]{2^{3} \times 2^{3} \times 2^{3}} \\
& =\sqrt[3]{8^{3}}=8
\end{aligned}
$$

Helpful Hint
Cube root of a negative number is always I negative.

```
                                    -8x-8x-8=-512
```

$\therefore \sqrt[3]{-512}=-8$
Thus, -512 is a cube of negative integer.
(ii)

	1296
2	648
2	324
2	162
3	81
3	27
3	9
3	3
	1

$2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$
$=2^{3} \times 2 \times 3^{3} \times 3$
Prime factors can not be grouped into triplets of equal numbers.
Thus, - 1296 is not the cube of negative integer.
(iii)

	1372
2	686
7	343
7	49
7	7
	1

$2 \times 2 \times 7 \times 7 \times 7$
$=2^{2} \times 7^{3}$
-1372 is not a cube of negative integer.
(iv)

	2197
13	169
13	13
	1

$13 \times 13 \times 13=13^{3}$
$\therefore \sqrt[3]{-2197}=-13$
Thus, -2197 is a cube of negative integer.
(v)

	17576
2	8788
2	4394
13	2197
13	179
13	13
	1

$2 \times 2 \times 2 \times 13 \times 13 \times 13$
$=2^{3} \times 13^{3}=26^{3}$
$\therefore \sqrt[3]{-17576}=-26$
Thus, -17576 is a cube of negative integer.
9.

$$
\begin{aligned}
& \text { Helpful Hint } \\
& \qquad \begin{array}{l}
l^{3}=0.064 \mathrm{~m}^{3} \\
l^{3}=\frac{64}{1000} \\
\\
\qquad \begin{array}{l}
l=\sqrt[3]{\frac{64}{1000}}=\frac{\sqrt[3]{64}}{\sqrt[3]{1000}} \\
\\
=\frac{\sqrt[3]{4} \times 4 \times 4}{10 \times 10 \times 10}
\end{array} \\
=\frac{4}{10}=0.4 \mathrm{~m}
\end{array}
\end{aligned}
$$

10. (i)

$$
\begin{aligned}
& \sqrt[3]{27}=\sqrt[3]{3 \times 3 \times 3}=3 \\
& \sqrt[3]{216}=\sqrt[3]{6 \times 6 \times 6}=6 \\
& \sqrt[3]{729}=\sqrt[3]{9 \times 9 \times 9}=9 \\
& \sqrt[3]{27} \times \sqrt[3]{216} \div \sqrt[3]{729} \\
& =3 \times 6 \div 9=18 \div 9=2
\end{aligned}
$$

(ii)
$\sqrt[3]{343}=\sqrt[3]{7 \times 7 \times 7}=7$
$\sqrt[3]{8}=\sqrt[3]{2 \times 2 \times 2}=2$

	2744
2	1372
2	686
7	343
7	49
7	7
	1

$\sqrt[3]{-2744}=\sqrt[3]{2 \times 2 \times 2 \times 7 \times 7 \times 7}$
$=-14$
$\sqrt[3]{343} \times \sqrt[3]{8} \div \sqrt[3]{-2744}$
$=7 \times 2 \div(-14)$
$=14 \div-14$
$=-1$
(iii)

$$
\begin{aligned}
& \sqrt[3]{-125} \times \sqrt[3]{64} \times \sqrt[3]{27} \\
& =-5 \div 4 \times 3 \\
& =\frac{-5}{4} \times 3=\frac{15}{4}=-3 \frac{3}{4} \\
& \text { (iv) } \\
& \quad \sqrt[3]{1331} \times \sqrt[3]{8} \times \sqrt[3]{1000} \\
& =11 \times 2 \times 10 \\
& =220
\end{aligned}
$$

(v)

$$
\begin{aligned}
& (\sqrt[3]{1728} \div \sqrt[3]{125}) \times(\sqrt[3]{1000} \div \sqrt[3]{64}) \\
& =(12 \div 5) \times(10 \div 4) \\
& =\frac{12^{3}}{5_{1}} \times \frac{10^{2}}{A_{1}} \\
& =6
\end{aligned}
$$

11. Volume of a cube $=l^{3}$
$=11^{3}=11 \times 11 \times 11$
$=1331 \mathrm{~cm}^{3}$
12. Minimum volume of $\operatorname{tank}=729 \mathrm{~m}^{3}$
$l^{3}=729$
$\sqrt[3]{l^{3}}=\sqrt[3]{729}$
$l=9 \mathrm{~cm}$
13. Volume $=1728 \mathrm{~cm}^{3}$
$l^{3}=1728$
$\sqrt[3]{l^{3}}=\sqrt[3]{1728}$
$l=12 \mathrm{~cm}$
Since the length height, and width each is greater than 12 cm , hence, Baneen can keep the box in her drawer.

Multiple Choice Questions 3

1. B
$512=2 \times 2 \times 2$ $\sqrt[3]{512}=\sqrt[3]{2^{3} \times 2^{3} \times 2^{3}}=8$
2. D
$3375=3 \times 3 \times 3 \times 5 \times 5 \times 5$
$\sqrt[3]{3375}=\sqrt[3]{3^{3} \times 5^{3}}=15$
3. C In $\sqrt[3]{2197}, 3$ is the index,
$\sqrt{ }$, is a radical and
13 is the cube root of 2197 .
4. D

1300 is not a perfect cube
$\sqrt[3]{1331}=11$
$\sqrt[3]{1728}=12$
$\sqrt[3]{125}=5$
5. A
$16 \times 16 \times 16=4096$

4 Proportions

Exercise 4

1. (i) Direct

If we increase the number of books, total cost will also increase.
(ii) directly
(iii) inversely
(iv) constant
(v) curved
2. (i) True
(ii) False

More petrol is consumed to cover more distance.
(iii) True
(iv) False

The graph of direct proportion always passes through the origin.
(v) False

If x and y are directly proportional then $y=k x$
3.

x	4	7	11	20
y	20	35	55	100

We can notice that y is obtained by multiplying the value of x by 5

$$
\begin{aligned}
& 4 \times 5=20 \\
& 7 \times 5=30
\end{aligned}
$$

Hence

$$
11 \times 5=55
$$

and

$$
\frac{100}{5}=20
$$

4.

x	9	27	81
y	27	9	3

5. Distance time 15 km $\quad 3 \mathrm{hrs}$ $x \mathrm{~km}$ 2 hrs

$$
\begin{aligned}
& \frac{x}{2}=\frac{15}{3} \\
& x=5 \times 2 \\
& x=10 \mathrm{~km}
\end{aligned}
$$

6. Number of men
length
11
$6 \frac{3}{4} \mathrm{~m}=\frac{27}{4} \mathrm{~m}$
27 m

Since both the quantities are directly proportional

$$
\begin{aligned}
\frac{x}{27} & =\frac{11}{\frac{27}{4}} \\
\frac{x}{27} & =\frac{4 \times 11}{27} \\
x & =\frac{44 \times 27}{27} \\
x & =44 \text { men }
\end{aligned}
$$

7. number of taps
time

6	30 min
x	20 min

Since both the quantities are inversely proportional.

$$
\begin{aligned}
& 20 \times x=6 \times 30 \\
& x=\frac{3 \times 30}{20}
\end{aligned}
$$

$$
x=9 \text { taps }
$$

8. number of girls number of days

$$
50 \quad 40
$$

$50+30=80$
Both the quantities are inversely proportional
$80 \times x=40 \times 50$

$$
\begin{gathered}
x=\frac{11}{40 \times 50^{25}} \\
80 \\
x=25 \text { days }
\end{gathered}
$$

9. length of rod 12 m
weight of rod 6 m 42 kg 6 m x kg
Both the quantities are directly proportional

$$
\begin{aligned}
& \frac{x}{6}=\frac{42}{12} \\
& x=\frac{42}{21} \times \sigma^{1} \\
& 12_{x_{1}}
\end{aligned}
$$

10. Width Length Price

$\frac{x}{2500}=\frac{50}{12} \times \frac{30}{25}$

$$
x=\frac{50 \times 30 \times 2500}{12 \times 25}=12500
$$

\therefore Rs 12500 is the price of a carpet measuring 50 feet by 30 feet

$$
\begin{aligned}
& \frac{x}{100}=\frac{8}{10} \times \frac{35}{25} \\
& x=\frac{8 \times 35 \times 100}{10 \times 25}=112
\end{aligned}
$$

$\therefore 112$ men should be employed to finish the job in 25 days if they work 10 hours a day.
12. (a) Since y is directly proportional to x, the constant is given by

$$
\begin{aligned}
& k=\frac{y}{x} \\
& k=\frac{9}{6}=\frac{3}{2}
\end{aligned}
$$

(b) for direct proportion, we have

$$
y=k x
$$

Substitute the value of k in above equation

$$
y=\frac{3}{2} x
$$

(c)

x	2	6	10	14	18
y	3	9	15	21	27

$y=\frac{3}{2} x$
$15=\frac{3}{2} x$
$x=15 \times \frac{2}{3}$
$x=10$
$y=\frac{3}{2} x$
$y=\frac{3}{2} \times 14$
$y=21$
11. Men Time Days

(d) Use the table of values given in part c to draw the graph.

13. (a) Since y is directly proportional to x, the constant is given by
$k=x y$
$k=2 \times 100=200$
(b) For inverse proportions, we have
$y=\frac{k}{x}$
$y=\frac{200}{x}$
(c)

x	2	4	8	10
y	100	50	25	20

(d) Use the table of values given in part c to draw the graph.

Revision: Numbers

Q1. Distributive Law of union order intersection states that
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
Let's RHS; A $\cup(B \cap C)$
$B \cap C=\{1,3,5,7,9,11,13,15\}$
$\cap\{0,1,5,6,10,13\}$
$=\{1,5,13\}$
$A \cup(B \cap C)=\{0,5,10,15\} \cup\{1,5,13\}$ $=\{0,1,5,10,13,15\}$
Now take LHS; (A $\cup B) \cap(A \cup C)$
$A \cup B=0,5,10,15\} \cup\{0,1,5,6,10,13\}$ $=\{0,1,5,6,10,13,15\}$
$B \cup C=\{1,3,5,7,9,11,13,15\}$
$\cup\{0,1,5,6,10,13\}$
$=\{0,1,3,5,6,7,9,10,11,13,15\}$
$(A \cup B) \cap(A \cup C)=(0,1,5,6,10,13,15\}$
$\cap\{0,1,3,5,6,7,9,10,11,13,15\}$
$=\{0,1,5,6,10,13,15\}$
Since LHS = RHS,
Thus, the distributive law of union over intersection is proved.
2. additive inverse

Multiplicative inverse
(i) - 354
$\frac{1}{354}$
(ii) 0.005
$-\frac{1}{0.005}$
(iii) $-\frac{1}{\sqrt[3]{5}}$
$\sqrt[3]{5}$
(iv) $2 \frac{5}{9}$
$\frac{9}{25}$
(v) $-\frac{17}{23}$
$\frac{22}{17}$ or $2 \frac{6}{17}$
3. (i)

	2.5		
	6.25		
+2	-4		
45	225		
	-225		
	0	\quad	($6.25=2.5$
:---			

(ii)

	27
	$7 \overline{29}$
+2	-4
47	329
	-329
	0

$\therefore \sqrt{729}=27$
(iii)

	19
	$3 \overline{61}$
+1	-1
29	261
	-261
	0

$\therefore \sqrt{361}=19$
(iv)

111	
$1 \overline{23} \overline{21}$	
+1	-1
21	23
+1	-21
221	221
	$-\quad 221$
	0

(v)

1.452	
	$2 . \overline{10} \overline{83} \overline{04}$
+1	-1
21	110
+1	-96
285	1483
+5	-1425
2902	5804
	$-\quad 5804$
	0

$\therefore \sqrt{2.108304}=1.452$
(vi)

22.2	
	$4 \overline{92 . \overline{84}}$
+2	-4
42	092
+2	-84
442	884
	$-\quad 884$
	0

$\therefore \sqrt{492.84}=22.2$
(vii)

	8.8
	$\overline{77 . \overline{44}}$
+8	-64
168	1344
	-1344
	0

$\therefore \sqrt{77.44}=8.8$
(viii)

0.71	
	$0 . \overline{50} \overline{41}$
+0	-0
7	50
+7	-49
141	141
	$-\quad 141$
	0

$$
\therefore \sqrt{0.5041}=0.71
$$

4. (i) $\sqrt{1 \frac{29}{49}}=\sqrt{\frac{78}{49}}=\frac{\sqrt{78}}{\sqrt{49}}=\frac{\sqrt{78}}{7}$

\[

\]

$$
\therefore \sqrt{\frac{78}{49}}=\frac{8.83}{7}=1.26
$$

(ii) $\sqrt{2 \frac{42}{75}}=\sqrt{\frac{192}{49}}=\sqrt{2.56}$

1.6	
	2.56
+1	-1
26	156
	-156
	0

$$
\therefore \sqrt{2 \frac{42}{75}}=1.6
$$

(iii) $\sqrt{3 \frac{334}{3024}}=\sqrt{\frac{9406}{3024}}=\sqrt{3.11}$

1.77	
	3.11
+1	-1
27	211
7	-189
346	2200
	-2076
	124

$\therefore \sqrt{3 \frac{334}{3024}}=1.77$
5. (i) $\sqrt{12}$

3.46	
	12
+3	-9
64	300
+4	-256
686	4400
	-4116
	284

$\therefore \sqrt{12}=3.46$
(ii)

7.28	
7	53
+7	-49
142	400
+2	-284
1448	11600
	-11584
	16

$\therefore \sqrt{53}=7.28$
(iii)

10.44	
1	$1 \overline{09}$
+1	-1
20	09
+0	0
204	900
-4	-816
2084	8400
	$-\quad 8336$

$$
\therefore \sqrt{109}=10.44
$$

(iv) $\sqrt{26}$

5.09	
5	26
+5	-25
100	100
+0	-
1009	0
	$-\quad 10000$

$$
\therefore \sqrt{26}=5.09
$$

6. (i)

3	3375
3	1125
3	375
5	125
5	25
5	5
	1

$$
\sqrt[3]{3375}=\sqrt[3]{3^{3} \times 5^{3}}=3 \times 5
$$

$\sqrt[3]{3375}=15$
(ii)

2	17576
2	8788
2	4394
13	2197
13	169
13	13
	1

$$
\begin{aligned}
& \sqrt[3]{17576}=\sqrt[3]{2 \times 2 \times 2 \times 13 \times 13 \times 13} \\
& \sqrt[3]{17576}=2 \times 13=26
\end{aligned}
$$

(iii)

61	226981
61	3721
61	61
	1

$\sqrt[3]{226981}=\sqrt[3]{61 \times 61 \times 61}$
$\therefore \sqrt{226981}=61$
(iv)

2	2744
2	1372
2	686
7	343
7	49
7	7
	1

$$
\sqrt[3]{2744}=\sqrt[3]{2 \times 2 \times 2 \times 7 \times 7 \times 7}
$$

$\therefore \sqrt[3]{2744}=2 \times 7=14$
(v)

3	35937
3	11979
3	3993
11	1331
11	121
11	11
	1

$\therefore \sqrt[3]{35937}=\sqrt[3]{3^{3} \times 11^{3}}$
$\therefore \sqrt[3]{35937}=2 \times 11=33$

Financial Arithmetic

Exercise 5

1. (i) Health $\begin{array}{lll}\text { (ii) } 20 \% & \text { (iii) } \frac{1}{8}\end{array}$
(iv) Markup $=$ Profit - Principal
(v) Marked Price - Selling Price
2. (i) False

Life insurance premiums are paid on monthly or yearly basis.
(ii) False

A son inherits twice the share of a daughter.
(iii) True
(iv) False

The profit is divided equally if the investment is equal.
(v) True
3.

$$
\begin{aligned}
& C P=\text { Rs } 3000 \\
& S P=\text { Rs } 3500 \\
& \text { Profit }=S P-C P \\
& =3500-3000=\text { Rs } 500
\end{aligned}
$$

Profit Percentage $=\frac{\text { Profit }}{C P} \times 100 \%$
$=\frac{\operatorname{Rs} 500}{\operatorname{Rs~} 3000} \times 100$
$=16.66 \%$ or 16.7%
4.

Helpful Hint

Loss is occurred if selling price is less than I the cost price.

$$
\begin{aligned}
& C P=\text { Rs } 10000 \\
& \begin{aligned}
S P & =\text { Rs } 9800 \\
\text { Loss } & =C P-S P \\
& =\text { Rs } 10000-\text { Rs } 9800 \\
& =\text { Rs } 200
\end{aligned}
\end{aligned}
$$

Loss percentage $=\frac{\text { Loss }}{C P} \times 100 \%$

$$
=\frac{200}{10000} \times 100 \%=2 \%
$$

\therefore Loss percentage $=2 \%$
5. CP of desk =Rs 15000

CP of chair = Rs 5000
Total CP $=15000+5000$

$$
\text { = Rs } 20000
$$

SP of desk = Rs 15500
SP of chair = Rs 1000
Total SP $=15500+100$
= Rs 16500
Since CP is greater than SP hence Jawaid bears an over loss.

$$
\begin{aligned}
\text { Loss } & =C P-S P \\
& =20000-16500 \\
& =\operatorname{Rs~} 3500
\end{aligned}
$$

Loss percentage $=\frac{\text { Loss }}{C P} \times 100 \%$

$$
=\frac{3500}{20000} \times 100 \%=17.5 \%
$$

\therefore Loss percentage $=17.5 \%$
6. $\mathrm{CP}=\mathrm{Rs} 750000$

SP = Rs 200000
Loss $=\mathrm{CP}-\mathrm{SP}$

$$
\begin{aligned}
& =750000-200000 \\
& =\text { Rs } 550000
\end{aligned}
$$

Loss percentage $=\frac{\text { Loss }}{C P} \times 100 \%$

$$
\begin{aligned}
& =\frac{550000}{750000} \times 100 \% \\
& =73.3 \%
\end{aligned}
$$

7. The most expensive item in the shop is priced at Rs 100.
Since,
10% of 100 is Rs 10 .
Hence, the shopkeeper should offer 10\% discount on all the items, so that he does not lose more than Rs 10 on any item.
8. Total purchase $=$ Rs 12,000
1% of Rs $5000=\frac{1}{100} \times 50000=$ Rs 50
2% of Rs $5000=\frac{2}{100} \times 500000=$ Rs 200
Remaining amount $=12000-10000$

$$
\text { = Rs } 2000
$$

3% of Rs $2000=\frac{3}{100} \times 2000$

$$
=\operatorname{Rs} 60
$$

Total Discount $=$ Rs $50+$ Rs $100+$ Rs 60

$$
=\text { Rs } 210
$$

9. Rate of Premium $=2 \%$

Insurance amount $=$ Rs 12000000
Amount of Premium = ?
Amount of premium $=2 \%$ of Rs 12000000

$$
\begin{aligned}
& =\frac{2}{100} \times 12000000 \\
& =\operatorname{Rs} 240000
\end{aligned}
$$

10. Market value of car= Rs 1000000

Rate of premium $=5 \%$
Amount of insurance premium paid in the 1 st year $=5 \%$ of Rs 1000000

$$
\begin{aligned}
& =\frac{5}{100} \times 1000000 \\
& =\operatorname{Rs} 50000
\end{aligned}
$$

Amount of insurance premium paid in
2nd year $=\frac{5}{100} \times(1000000-50000)$

$$
\begin{aligned}
& =\frac{5}{100} \times 950000 \\
& =\operatorname{Rs} 47500
\end{aligned}
$$

Amount of insurance premium paid in
3 rd year $=\frac{5}{100} \times(950000-47500)$
$=\frac{5}{100} \times 902500$
$=$ Rs 45125
11. Total amount $=$ Rs 250000
widow's share $=\frac{1}{8}$ of Rs 250000

$$
=\frac{1}{8} \times 250000
$$

$$
\text { = Rs } 31250
$$

Remaining amount $=250000-31250$

$$
\text { = Rs } 218850
$$

Helpful Hint

Son inherits twice the share of a daughter.

Ratio of shares of sons to share of daughter 2: 1 2: 1×2 [2 daughters] 2 : 2 1 : 1
Sum of ratios

$$
=1+1=2
$$

1 son's share
$=\frac{1}{2} \times 218750$

$$
\text { = Rs } 109375
$$

2 daughter's share $=\frac{1}{2} \times 218750$

$$
\text { = Rs } 109375
$$

1 daughter's share $=$ Rs $\frac{109375}{2}$
$=$ Rs 54687.5
12. Total amount $=$ Rs 30000

Ratio of shares of sons to the shares of daughters

2 : 1
2×2:1 [2 sons]
4: 1
Sum of ratios $=4+1=5$
2 sons' share $=\frac{4}{5} \times 30000=$ Rs 24000
1 son's share $=$ Rs $\frac{240000}{2}=$ Rs 12000
the daughter's share $=\frac{1}{5} \times 30000$

$$
=\text { Rs } 6000
$$

13. Ratio of share in profit = ratio of their investments
Maria's investment: Samia's investment 22500: 35000

$$
9: 14
$$

Sum of ratios $=9+14=23$
Maria's share in profit $=\frac{9}{23} \times 13800$

$$
=\text { Rs } 5400
$$

Samia's share in profit $=\frac{14}{23} \times 13800$

$$
\text { = Rs } 8400
$$

Or we can simply subtract Maria's share from total profit Rs $13800-5400=$ Rs 8400
14. Total amount $=$ Rs 240000

Ratio of inheritance $=5: 4: 3$
Sum of the ratios $=5+4+3=12$
Aslam receives inheritance $=\frac{5}{12} \times$ Rs 240000

$$
=\text { Rs } 100000
$$

$$
\begin{aligned}
\text { Pervaiz receives } & =\frac{4}{12} \times \text { Rs } 240000 \\
& =\text { Rs } 80,000
\end{aligned}
$$

$$
\text { Sana receives }=\frac{3}{12} \times \text { Rs } 240000
$$

$$
\text { = Rs } 60000
$$

15. Amount in US\$ $=\$ 59$

Exchange rate for $\$ 1=$ Rs 104
Amount in rupees $=59 \times 104$

$$
\text { = Rs } 6136
$$

16. Total amount in rupees $=$ Rs 200000

Half of amount $=$ Rs $\frac{200000}{2}$

$$
\text { = Rs } 100000
$$

Exchange rate for $\$ 1=$ Rs 107
Amount in US\$ $=\frac{\text { Rs } 100000}{\text { Rs } 107}$

$$
=\$ 934.579
$$

Exchange rate for \$1 = Rs 106 for rest of the amount

$$
\begin{aligned}
\text { Amount in US\$ } & =\frac{\operatorname{Rs} 100000}{\text { Rs } 106} \\
& =\$ 934.396
\end{aligned}
$$

Total amount in US\$ = \$ 934.579 + \$ 943.396

$$
=\$ 1877.98 \cong \$ 1878
$$

17. (i)

$$
\begin{aligned}
\mathrm{P} & =\mathrm{Rs} 400 \\
\mathrm{R} & =5 \% \\
\mathrm{~T} & =4 \text { years } \\
\text { Markup } & =? \\
\text { Markup } & =\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \\
& =\frac{400 \times 5 \times 4}{100} \\
& =\text { Rs } 80
\end{aligned}
$$

Hence markup is Rs 80.

$$
\begin{align*}
\mathrm{P} & =\text { Rs } 50 \tag{ii}\\
\mathrm{R} & =3 \frac{1}{2} \% \\
\mathrm{~T} & =7 \text { years } \\
\text { Markup } & =? \\
\text { Markup } & =\frac{50 \times 7 \times 7}{2 \times 10 \theta_{2}} \\
& =\frac{49}{4} \\
& =\text { Rs } 12.25
\end{align*}
$$

Hence markup is Rs 12.25
(iii)

$$
\begin{aligned}
P & =R s 450 \\
R & =2 \% \\
T & =2 \text { years } 9 \text { month }=2 \frac{3}{4} \\
\text { Markup } & =? \\
\text { Markup } & =\frac{P \times R \times T}{100} \\
& =\frac{450 \times 4 \times 11}{2^{2} 00 \times A} \\
& =\frac{99}{2} \\
& =\operatorname{Rs} 49.50
\end{aligned}
$$

Hence, markup is Rs 49.50
18. (i)

$$
\begin{aligned}
P & =\text { Rs } 700 \\
\text { Markup } & =\text { Rs } 210 \\
T & =3 \text { years } \\
R \% & =? \\
\text { Markup } & =\frac{P \times R \times T}{100} \\
R & =\frac{\text { Markup } \times 100}{P \times T} \\
R & =\frac{210^{7010} \times 100}{700_{7} \times 31} \\
R \% & =10 \%
\end{aligned}
$$

Hence, the rate\% per annum is Rs 10\%
(ii)

$$
\begin{aligned}
P & =\text { Rs } 1200 \\
\text { Markup } & =\text { Rs } 144 \\
T & =2 \text { years } \\
R \% & =? \\
R & =\frac{\text { Markup } \times 100}{P \times T} \\
& =\frac{444^{42^{6}} \times 100}{1200_{12} \times Z} \\
& =6 \\
R \% & =6 \%
\end{aligned}
$$

Hence the rate\% per annum is 6\%
19. (i)

$$
\begin{aligned}
P & =\text { Rs } 600 \\
\text { Markup } & =\text { Rs } 90 \\
\mathrm{R} \% & =5 \% \text { per anum } \\
\mathrm{T} & =? \\
\mathrm{~T} & =\frac{\text { Markup } \times 100}{\mathrm{P} \times \mathrm{T}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{90^{15^{3}} \times 100^{1}}{600_{6} \times 5} \\
T & =3 \text { years }
\end{aligned}
$$

Hence the required time is 3 years.
(ii)

$$
\begin{aligned}
P & =\text { Rs } 1500 \\
\text { Markup } & =\text { Rs } 450 \\
\mathrm{R} \% & =6 \% \text { per annum } \\
T & =? \\
T & =\frac{\mathrm{M} \times 100}{\mathrm{P} \times \mathrm{R}} \\
& =\frac{450^{55^{5}} \times 100^{1}}{4500_{45} \times 66_{1}} \\
\mathrm{~T} & =5 \text { years }^{1}
\end{aligned}
$$

Hence the required time is 5 years.
20.
$P=$ Rs 660
$\mathrm{R} \%=4 \frac{1}{2} \%=\frac{9}{2} \%$
$T=3$ year and 4 months $=3$

$$
\begin{aligned}
\text { Markup } & =\frac{\frac{1}{3} \text { year }}{?} \\
\text { Markup } & =\frac{P \times R \times T}{100} \\
& =\frac{22^{11}}{660 \times 9 \times 10^{1}} \\
& =\frac{66100 \times 3}{10_{1}}
\end{aligned}
$$

$$
\text { Markup = Rs } 99 .
$$

Hence the required markup is Rs 99.
21.
$P=$ Rs 600
$R \%=6 \%$
$\mathrm{T}=3$ year and 6 months and 20 days
Markup $=$?
Markup $=\frac{P \times R \times T}{100}$
$\mathrm{T}=3$ years 6 months and 20 days.
Converting into years
20 days $=\frac{20}{30}=\frac{2}{3}$ months
Total months $=6 \frac{2}{3}=\frac{20}{3}$ months
$\frac{20}{3}$ months $=\frac{20^{5}}{3 \times 1 \mathscr{Z}_{3}}$ years

$$
=\frac{5}{9} \text { years }
$$

Total years $=3 \frac{5}{9}$ years
$=\frac{32}{9}$ years
Markup $=\frac{{\frac{\sigma^{2}}{}}^{6} 600 \times 6^{2} \times 32}{100 \times 9_{\beta_{1}}}$
Markup $=$ Rs 128
Hence the markup is Rs 128.
22.

$$
\left.\begin{array}{rl}
\mathrm{P} & =\mathrm{Rs} 850 \\
\mathrm{R} \% & =5 \frac{1}{2} \%=\frac{11}{2} \% \\
\text { per annum }
\end{array}\right] \begin{aligned}
\mathrm{T} & =6 \text { months }=\frac{1}{2} \text { years } \\
\text { Markup } & =? \\
\text { Markup } & =\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \\
& =\frac{855^{17}}{2 \times 11 \times 1} \\
\text { Markup } & =\frac{187}{8} \\
& =\mathrm{Rs} 23.375
\end{aligned}
$$

Hence the markup is Rs 23.375
23.

$$
\begin{aligned}
& \mathrm{P}=\text { Rs } 560 \\
& \mathrm{R} \%=6 \% \text { per annum } \\
& \mathrm{T}=6 \text { months }=1 / 2 \text { year } \\
& \mathrm{A}=? \\
& \text { Markup }=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \\
&=\frac{5628}{560 \times 1 \times 3} \\
& Z_{1} \times 100 \\
&=\frac{84}{10} \\
&=\text { Rs } 8.40 \\
& \text { Profit }=\text { Principal }+ \text { Markup } \\
&=560+8.40 \\
&=\text { Rs } 568.40
\end{aligned}
$$

Hence the profit is Rs 568.40.
24.

$$
\begin{aligned}
P & =? \\
\text { Markup } & =\text { Rs } 130 \\
R \% & =3 \frac{1}{4} \%=\frac{13}{4} \% \\
T & =5 \text { years } \\
P & =\frac{1 \times 100}{R \times T} \\
& =\frac{130^{10^{2}} \times 100 \times 4}{13 \times 5} \\
& =\text { Rs } 800
\end{aligned}
$$

Hence, principal amount is Rs 800.

Multiple Choice Questions 5

1. D
2. D

Loss $=C P-S P=$ Rs $2000-$ Rs $18000=$ Rs 200
Loss percentage $=\frac{\text { Loss }}{C P} \times 100 \%$

$$
=\frac{200}{2000} \times 100 \%=10 \%
$$

3. C

Profit $=$ SP - CP = Rs $3000-$ Rs $2000=$ Rs 1000
Profit percentage $=\frac{\text { Profit }}{C P} \times 100 \%$

$$
=\frac{1000}{2000} \times 100 \%=50 \%
$$

4. C

Dis $=$ Dis rate \times Marked price

$$
=3 \% \times \operatorname{Rs} 500=\frac{3}{100} \times \operatorname{Rs} 500=\operatorname{Rs} 15
$$

5. B

Amount of premium
$=$ rate of premium \times insurance amount Rs $4000=$ rate of premium \times Rs 200,000 rate of premium $=\frac{\operatorname{Rs~} 4000}{\operatorname{Rs} 200000} \times 100 \%$
= 2\%

Algebra:

Laws of Indices/Exponents

Exercise 6

1. (i) 125
(ii) exponent
(iii) 0 (zero)
(iv) 3.456×10^{2}
(v) 0.0001357
2. (i) False
$x^{0}=1$
(ii) True
(iii) False

Helpful Hint

$$
a^{m} \times a^{n}=a^{m+n}
$$

(iv) False

$$
x^{3} \div x^{5}=\frac{x^{3}}{x^{5}}=x^{3-5}=x^{-2}
$$

(v) False

$$
\left(5^{4}\right)^{2}=5^{4 \times 2}
$$

3. (i)
3^{4}
(ii) $8=2 \times 2 \times 2=2^{3}$
(iii) $\left(\frac{2}{3}\right)^{1}$
(iv) $\frac{8}{27}=\frac{2 \times 2 \times 2}{3 \times 3 \times 3}=\frac{2^{3}}{3^{3}}=\left(\frac{2}{3}\right)^{3}$
(v) $\quad 2^{-3} \times 2^{-3}=2^{-3-3}=2^{-6}$
4.

Helpful Hint
Give answers without simplification of 'exponents.
(i) base $=, 3$ exponent $=4$
(ii) base $=4$, exponent $=1$
(iii) base $=2^{-3}$, exponent $=5$
(iv) base $=x$, exponent $=-4$
(v) base $=5$, exponent $=0$
(vi) base $=1$, exponent $=1$
(vii) base $=3$, exponent $=\frac{1}{2}$
(viii) base $=5$, exponent $=\frac{1}{2}$
(ix) base $=3 a^{2}$, exponent $=0$
(x) base $=\alpha^{2}$, exponent $=1$
5. (i) $4\left(a^{3}\right)^{0}$
$=4 \times 1 \quad\left[a^{\circ}=1\right]$
(ii) $(3)^{-4}$
$=\frac{1}{3^{4}}=\frac{1}{81}$
(iii) $\frac{4}{2^{0}}=4$
(iv) $(2)^{6}$
$=64$
(v) $\left(2^{\frac{1}{2}}\right)^{8}$
$=2^{\frac{1}{4} \times 8^{8}}$
$=2^{4}=16$
6. (i) $\left(4 x^{3}\right)\left(2 x^{3}\right)$
$=8 x^{3+3} \quad\left[a^{m} \times a^{n}=a^{m n}\right]$
$=8 x^{6}$
(ii) $8^{0}=1 \quad\left[a^{0}=1\right]$
(iii) $(9 x)^{0}$
$=-1$
(iv) $\left(y^{4}\right)^{3}$

$$
\begin{aligned}
& =y^{4 \times 3} \\
& =y^{12}\left[\left(a^{0}\right)^{\mathrm{n}}=a^{\mathrm{mn}}\right]
\end{aligned}
$$

(v) $\left(x^{2} y\right)^{4}$
$=x^{2 \times 4} y^{4}=x^{8} y^{4}$
(vi) $\left(2 c d^{4}\right)(c d)^{5}$
$=\left(2 c d^{4}\right)\left(c^{5} d^{5}\right)=2 c^{1+5} d^{4+5}$
$=2 c^{6} d^{9}$
(vii) $\left(2 f g^{4}\right)^{4}(f g)^{6}$
$=\left(15 f^{4} g^{16}\right)\left(f^{6} g^{6}\right)$
$=16 f^{4+6} g^{16+6}$
$=16 f^{10} g^{22}$
(viii) $\frac{x^{5} y^{6}}{x y^{2}}$

$$
=x^{5-1} y^{6-2}=x^{4} y^{4}
$$

(ix) $\frac{x^{2} y^{5}}{x y^{4}}$

$$
=x^{2-1} y^{5-4}=x y
$$

(x) $\frac{x^{-2}}{x^{-8}}$

$$
=x^{8-1}=x^{7}
$$

(xi) $\frac{24 x^{6}}{12 x^{-8}}$

$$
=2 x^{8+6}=2 x^{14}
$$

(xii) $\left(2 x^{3} 2 y^{-3}\right)^{-2}$

$$
=\frac{y^{6}}{4 x^{6}}
$$

7. (i) $\left(\frac{-2}{7}\right)^{-4} \times\left(\frac{-2}{7}\right)^{2}$

$$
\begin{aligned}
& =\left(\frac{-7}{23}\right)^{4} \times\left(\frac{-5}{7}\right)^{2} \\
& =\frac{7^{4-2} \times 25}{(-2)^{4}}
\end{aligned}
$$

$$
=\frac{7^{4-2} \times 25}{(-2)^{4}}
$$

$$
=\frac{7^{2} \times 25}{16}=\frac{49 \times 25}{16}=\frac{1225}{16}
$$

$=76 \frac{9}{16}$
(ii) $\left(\frac{-1}{4}\right)^{-3} \times\left(\frac{-1}{4}\right)^{-2}$
$=(-4)^{3} \times(-4)^{2}$
$=(-4)^{3+2}=(-4)^{5}$
$=-64$

SHelpful Hint

, If the exponent on a negative number is an
, odd number, the result is always a negative inumber.
(iii) $\left[\left(\frac{-3}{2}\right)^{2}\right]^{-3}$

$$
\begin{aligned}
& =\left[\frac{-3}{2}\right]^{-6} \\
& =\left[\frac{-2}{3}\right]^{6}=\frac{64}{729}
\end{aligned}
$$

(iv) $(2)^{-2} \times(4)^{2}$
$=\frac{1}{2^{2}} \times 16$
$=\frac{1}{4} \times 16=4$
8. (i) $\left(\frac{1}{2}\right)^{-2} \times\left(\frac{1}{3}\right)^{-2} \times\left(\frac{1}{4}\right)^{-2}$
$=2^{2}+3^{2}+4^{2}$
$=4+9+16=29$
(ii) $\left(\frac{2}{5}\right)^{-2} \div\left(\frac{9}{5}\right)^{0}$
$=\frac{2^{2}}{5^{2}} \div 1$
$=\frac{4}{25}$
(iii) $=\left(2^{-1} \times 5^{-1}\right)^{-1} \div 4^{-1}$
$=\left(\frac{1}{2} \times \frac{1}{5}\right)^{-1} \div \frac{1}{4}$
$=\left(\frac{1}{10}\right)^{-1} \times 4=10 \times 4=40$
(iv) $=\left(4^{-1}+8^{-1}\right) \div\left(\frac{2}{3}\right)^{-1}$
$=\left(\frac{1}{4}+\frac{1}{8}\right) \div\left(\frac{3}{2}\right)$
$=\frac{2+1}{8} \times \frac{2}{3}$
$=\frac{{ }^{1} \frac{z}{8_{4}}}{8_{4}} \times \frac{{ }^{1}}{z_{1}}=\frac{1}{4}$
9. (i) 700 (2 places towards left)
7.00×10^{2}
(ii) 5100000000 (9 places towards left)
5.10×10^{9}
(iii) 30812 (4 places towards left) 3.0812×10^{4}
(iv) $\xrightarrow{0.003187}$ (3 places towards right) 3.187×10^{-3}

Helpful Hint

f Use negative sign for exponent of 10 when
' the decimal point moves towards right
10. (i) $\quad 3.18 \times 10^{6}$ (move decimal point 6 places towards right)
= 3180000
Helpful Hint
Move decimal point toward right if the
: exponent of 10 is positive and vice versa
(ii) 0.65×10^{-3} (move decimal point 3 places towards left)
$=0.00065$
(iii) 1.80×10^{2} (move decimal point 2 places towards right)
$=180$
(iv) 6.21×10^{4} (move decimal point 4 places towards right)
$=62100$

Multiple Choice Question 6

1. A
2. C
3. A
4. D
5. B

Algebra Polynomials

Exercise 7A

1. (i) $1,4,7,10,13, \ldots$

$$
\begin{aligned}
& T_{1}=1, d=4-1=3 \\
& n^{\text {th }} \text { term }=\mathrm{T}_{1}+(n-1) d \\
& T_{n}=1+(n-) 3 \\
& \quad=1+3 n-3 \\
& T_{n}=3 n-2
\end{aligned}
$$

Helpful Hint

T_{1} is the first term of the number sequence
and d is the common difference
(ii) $2,6,10,14,18, \ldots$
$T_{1}=2$
$d=6-2=4$
$T_{n}=T_{1}+(n-1) d$

$$
=4+(n-1) 4
$$

$$
=4+4 n-4
$$

$T_{n}=4 n$
(iii) $-4,0,-4-8,12, \ldots$
$T_{1}=-4$
$d=0-(+4)=0-4=-4$
$T_{n}=43+(n-1) 4(-4)$
$=4-4 n+4$
$=8-4 n$
(iv) $26,20,14,8,2$,.
$T_{1}=26, d=20-26=6$
$T_{n}=26+(n-1)(6)$
$=26-6 n+6$

$$
=32-6 n
$$

2. (i) $13,16,19, \ldots$

$$
\begin{aligned}
T_{n} & =T_{1}+(n-1) d \\
T_{n} & =7+(n-1) 3 \\
& =7+3 n-3
\end{aligned}
$$

$$
T_{n}=3 n+4
$$

(ii) $\quad T_{10}=3(10)+4$

$$
=30+4
$$

$$
T_{10}=34
$$

Helpful Hint
To find 10th term substitute $n=10$ in the $n^{\text {th }}$, term formula.
3 . $1,5,9,13,17$,

$$
T_{1}=1, d=5-1=4
$$

(i) $\quad T_{n}=T_{1}+(n-1) d$

$$
=1+(n-1) 4
$$

$$
=1+4 n-4
$$

$$
T_{\mathrm{n}}=4 n-3
$$

(ii) $T_{10}=4(10)-3$

$$
=40-3=37
$$

(iii) Keep 95 equal to the nth term

$$
4 n-3=95
$$

Now find the value of n.

$$
\begin{aligned}
& 4 n=95+3 \\
& n=\frac{98}{4}=24.5
\end{aligned}
$$

Since, the value of n is not a natural number hence, 95 will not be a term of this sequence.

Helpful Hint

Here ' n ' represents natural numbers.
4. (i) $T n=5 n+2$

1st term $T_{1}=5(1)+2=5+2=7$
2nd term $T_{2}=5(2)+2=10+2=12$
3rd term $T_{3}=5(3)+2=15+2=17$
(ii) $5,11,17,23,29$,

$$
\begin{aligned}
T_{1} & =5, d=11-5=6 \\
T_{n} & =\mathrm{T}_{1}+(n-1) d \\
& =5+(n-1) 6 \\
& =6 n-1
\end{aligned}
$$

5. (i) $2,9,16,23,30$,

$$
\begin{aligned}
T_{1} & =2, d=9-2=7 \\
T_{n} & =2+(n-1) 7 \\
& =2+7 n-7 \\
& =7 n-5
\end{aligned}
$$

(ii) $\quad T_{100}=7(100)-5$

$$
=700-5
$$

$T_{100}=695$
6. (i) $10,7,4,1,-2$
$T_{1}=10, d=7-10=-3$
$T_{n}=10+(n-1)(-3)$
$=10-3 n+3$
$T_{n}=13-3 n$
(ii) $\quad T_{50}=13-3(50)$

$$
=13-150
$$

$T_{50}=-137$
7. $12,22,32,42,52$,
$T_{1}=, d=22-12=10$
$T_{n}=12+(n-1) 10$

$$
=12+10 n-10
$$

$T_{n}=2+10 n$
8. (i) $T_{n}=3 n-2$

1st term $T_{1} 3$ (1)-2

$$
=3-2=1
$$

2nd term $\mathrm{T}_{2}=3$ (2)-2

$$
=6-2=4
$$

(ii) $3 n-2=70$
$3 n=70+2$
$n=\frac{72}{3}$
$n=24$
70 is the $24^{\text {th }}$ term of this sequence.
(iii) $3 n-2=101$
$3 n=101+2$
$n=\frac{103}{3}$
$n=34.33$
Since, n is not a natural number hence,
111 is not a term of the given sequence.
9. $T_{n}=5-3 n$

1st term $=T_{1}=5-3$ (

$$
\begin{equation*}
=5-3=2 \tag{1}
\end{equation*}
$$

2nd term $=T_{2}=5-3(2)$

$$
\begin{equation*}
=5-6=-1 \tag{3}
\end{equation*}
$$

3rd term $\quad=T_{3}=5-3$ (3)

$$
=5-9=-4
$$

10. $T_{n}=4 n-7$
(i) $T_{1}=4(1)-7=4-7=-3$
$T_{2}=4(2)-7=8-7=1$
$T_{3}=4(3)-7=12-7=5$
(ii) $\quad T_{50}=4(50)-7=200-7=193$
$T_{51}=4$ (51) $-7=204-7=197$
Difference between 50th and 51st terms is,
$T_{51}-T_{50}=197-193=4$
(iii) Last term $=393$
$T_{n}=393$
$4 n-7=393$
$4 n=393+7$
$n=\frac{400}{4}$
$n=100$
There are 100 terms in this sequence.
11. $30,25,20,15,10$,

$$
\begin{aligned}
T_{1} & =30, d=25-30=-5 \\
T_{n} & =T_{1}+(n-1) d \\
& =30+(n-1)(-5) \\
& =30-5 n+5 \\
& =35-5 n
\end{aligned}
$$

12. 2, 25, 3, 3.5, 4,
(i) $T_{1}=2, d=2.5-2=0.5$

$$
\begin{aligned}
T_{n} & =T_{1}+(n-1) d \\
& =2+(n-1)(0.5) \\
& =2+0.5 n-0.5 \\
& =0.5 n+1.5
\end{aligned}
$$

(ii) $T_{20}=0.5(20)+1.5$

$$
=10+1.5
$$

$$
=11.5
$$

Exercise 7B

1. $\left(m^{2}+m n+n^{2}\right)\left(m^{2}+n\right)$
$=m^{2}\left(m^{2}+n\right)+m n\left(m^{2}+n\right)+n^{2}\left(m^{2}+n\right)$
$=m^{4}+m^{2} n+m^{3} n+m n^{2}+m^{2} n^{2}+n^{3}$
or $m^{4}+m^{3} n+m^{2} n+m^{2} n^{2}+m n^{2}+n^{3}$
2. $(a b+1)\left(5 a^{2}-2 a b+3 b^{2}\right)$
$=a b\left(5 a^{2}-2 a b+3 b^{2}\right)+1\left(5 a^{2}-2 a b+3 b^{2}\right)$
$=5 a^{3} b-2 a^{2} b^{2}+3 a b^{3}+5 a^{2}-2 a b+3 b^{2}$
3. $\left(a^{4}-a^{2}+1\right)\left(a^{4}+a^{2}-1\right)$
$=a^{4}\left(a^{4}+a^{3}-1\right)-a^{2}\left(a^{4}+a^{3}-1\right)+1\left(a^{4}+a^{3}-1\right)$
$=a^{8}+a^{7}-a^{4}-a^{6}-a^{5}+a+a^{4}+a^{3}-1$
$=a^{8}+a^{7}-a^{6}-a^{5}+a^{3}+a-1$
4. $\left(p x^{2}+q x+r\right)\left(a x^{2}+b x+c\right)$
$=p x^{2}\left(a x^{2}+b x+c\right)+q x\left(a x^{2}+b x+c\right)+r\left(a x^{2}+b x+c\right)$
$=a p x^{4}+p b x^{3}+p x^{2} c+a q x^{3}+b q x^{2}+q x c+a r x^{2}+b r x+r c$
$=a p x^{4}+(p b+a q) x^{3}+(b c+p q+q r) x^{2}+(q c+b r) x+r c$
5. $(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=a\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)+b\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)+c\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=a^{3}+a b^{2}+a c^{2}-a^{2} b-a b c-c c^{2}+a^{2} b+b^{3}+b c^{2}-a b^{2}-b^{2} c-a b c+a^{2} c+b^{2} c+c^{3}-a b c-b c^{2}-c^{2} a$ $=a^{3}+b^{3}+c^{3}-3 a b c$
6. $\left(x^{3}-x^{2}+x-1\right)\left(1+x+x^{2}+x^{3}\right)$
$=x^{3}\left(1+x+x^{2}+x^{3}\right)-x^{2}\left(1+x+x^{2}+x^{3}\right)+x\left(1+x+x^{2}+x^{2}\right)-1\left(1+x+x^{2}+x^{3}\right)$
$=x^{8}+x^{4}+x^{5}+x^{6}-x^{2}-x^{3}-x^{4}-x^{5}+x+x^{2}+x^{8}+x^{4}-1-x^{6}-x^{2}-x^{3}$
$=x^{6}+x^{4}-x^{2}-1$
7. $(m+1)(m-2)(m+3)$
$=\{m(m-2)+1(m-2)\}(m+3)$
$=\left(m^{2}-2 m+m-2\right)(m+3)$
$=\left(m^{2}-m-2\right)(m+3)$
$=m\left(m^{2}-m-2\right)+3\left(m^{2}-m-2\right)$
$=m^{3}-m^{2}-2 m+3 m^{2}-3 m-6$
$=m^{3}+2 m^{2}-5 m-6$

$$
\text { 8. } \begin{aligned}
&(x+y)\left(x^{2}-x y+y^{2}\right)\left(x^{3}-y^{3}\right) \\
&=\left\{x\left(x^{2}-x y+y^{2}\right)+y\left(x^{2}-x y+y^{2}\right)\right\}\left(x^{3}-y^{3}\right) \\
&=\left(x^{3}-x^{2} y+x y^{2}+x^{2} y-x y^{2}+y^{3}\right)\left(x^{3}-y^{3}\right) \\
&=\left(x^{3}+y^{3}\right)\left(x^{3}-y^{3}\right) \\
&=x^{3}\left(x^{3}-y^{3}\right)+y^{3}\left(x^{3}-y^{3}\right) \\
&=x^{6}-x^{3} y^{3}+x^{3} y^{3}-y^{6} \\
&=x^{6}-y^{6}
\end{aligned}
$$

9. $\left(m^{2}+m n+n^{2}\right)\left(m^{2}-m n+n^{2}\right)\left(m^{4}-m^{2} n^{2}+n^{4}\right)$
$=\left\{m^{2}\left(m^{2}-m n+n^{2}\right)+m n\left(m^{2}-m n+n^{2}\right)+n^{2}\left(m^{2}-m n+n^{2}\right)\right\}\left(m^{4}-m^{2} n^{2}+n^{4}\right)$
$=\left(m^{4}-m^{3} n+m^{2} n^{2}+m^{3} n-m^{2} n^{2}+m n^{3}+m^{2} n^{2}-m n^{3}+n^{4}\right)\left(m^{4}-m^{2} n^{2}+n^{4}\right)$
$=\left(m^{4}+m^{2} n^{2}+n^{4}\right)\left(m^{4}-m^{2} n^{2}+n^{4}\right)$
$=\left\{m^{4}\left(m^{4}-m^{2} n^{2}+n^{4}\right)+m^{2} n^{2}\left(m^{4}-m^{2} n^{2}+n^{4}\right)+n^{4}\left(m^{4}-m^{2} n^{2}+n^{4}\right)\right\}$
$=m^{8}-m^{6} n^{2}+m^{4} n^{4}+m^{6} n^{2}-m^{4} n^{4}+m^{2} n^{6}+m^{4} n^{4}-m^{2} n^{6}+n^{8}$
$=m^{8}+m^{4} n^{4}+n^{8}$
10. $\left(1+x+x^{2}\right)\left(1-x+x^{2}\right)\left(1-x^{2}+x^{4}\right)$
$=\left\{1\left(1-x+x^{2}\right)+x\left(1-x+x^{2}\right)+x^{2}\left(1-x+x^{2}\right)\right\}\left(1-x^{2}+x^{4}\right)$
$=\left(1-x^{6}+x^{2}+x^{2}-x^{2}+x^{3}+x^{2}-x^{3}+x^{4}\right)\left(1-x^{2}+x^{4}\right)$
$=\left(1+x^{2}+x^{4}\right)\left(1-x^{2}+x^{4}\right)$
$=1\left(1-x^{2}+x^{4}\right)+x^{2}\left(1-x^{2}+x^{4}\right)+x^{4}\left(1-x^{2}+x^{4}\right)$
$=1-x^{2}+x^{4}+x^{2}-x^{4}+x^{6}+x^{4}-x^{6}+x^{8}$
$=1+x^{4}+x^{8}$
11.

$(x+1) \mathrm{m}$
(x) m

Helpful Hint

Volume of the block is equal to the volume of cuboid.

Length of the block $=l=(x+2) \mathrm{m}$
Breadth of the block $=b=(x+1) \mathrm{m}$
Height of the block $=h=(x) \mathrm{m}$
Volume = ?
Volume $=l \times b \times h=x(x+1)(x+2)$

$$
\begin{aligned}
& =[x(x)+x(1)](x+2)=\left(x^{2}+x\right)(x+2) \\
& =\left(x^{2}+3 x^{2}+2 x\right) \mathrm{m}^{3} \\
& =\left(x^{2}+3 x^{2}+2 x\right) \mathrm{m}^{3}
\end{aligned}
$$

Since, $x=20$
hence,
Volume $=(20)^{3}+3(20)^{2}+2(20)$

$$
\begin{aligned}
& =8000+3 \times 400+40 \\
& =8000+1200+40=9240 \mathrm{~m}^{3}
\end{aligned}
$$

12.

Helpful Hint
The area of square pool = the area of a square

Length of a side of a square $=l=(x+6) \mathrm{m}$ Area of a square

$$
\begin{aligned}
& =l^{2}=l \times l \\
& =(x+6)(x+6) \\
& =x(x+6)+6(x+6) \\
& =x^{2}+6 x+6 x+36=x^{2}+12 x+36
\end{aligned}
$$

\therefore Area of the pool $=\left(x^{2}+12 x+36\right) \mathrm{m}^{2}$
13. Price of one doll $=\operatorname{Rs}(a+5)$

Number of dolls $=(a+6)$
Total price to buy $(\alpha+6)$ dolls

$$
\begin{aligned}
& =\text { number of dolls } \times \text { price of one doll } \\
& =(a+6)(a+5) \\
& =a(a+5)+6(a+5)
\end{aligned}
$$

$$
\begin{aligned}
& =a^{2}+a+6 a+30 \\
& =a^{2}+11 a+30
\end{aligned}
$$

\therefore Rahila will have to spend $\operatorname{Rs}\left(a^{2}+11 a+30\right)$ to buy $(a+6)$ dolls.
14. Number of flowers $=25 x^{2}+5 x+5$

Price of one flower $=$ Rs $5 x$
Total money at the end of 5 days = ?
Money at the end of each day
$=$ price of one flower \div number of flowers

$$
\begin{aligned}
& =5 x\left(25 x^{2}+5 x+5\right) \\
& =\operatorname{Rs}\left(125 x^{3}+25 x^{2}+25 x\right)
\end{aligned}
$$

Total money at the end of 5 days
$=5 \times\left(125 x^{3}+25 x^{2}+25 x\right)$
$=\operatorname{Rs}\left(625 x^{3}+125 x^{2}+125 x\right)$
or $=\operatorname{Rs} 125 x\left(5 x^{2}+x+1\right)$
15. Length $=l=(2 x-1) \mathrm{m}$

Width or breadth $=b=(x+2) \mathrm{m}$
Area $=$?

$$
\begin{aligned}
\text { Area }=l \times b & =(2 x-1)(x+2) \\
& =2 x(x+2)-1(x+2) \\
& =2 x^{2}+4 x-x-2 \\
& =\left(2 x^{2}+3 x-2\right) \mathrm{m}^{2}
\end{aligned}
$$

16. $l=(2 x-1) \mathrm{m}$
$b=(x+2) m$
Parking area = ?
Cost of clearing parking area $=$?
Cost per m ${ }^{2}=$ Rs 50

$$
\begin{aligned}
\text { Area } & =l \times b \\
& =(2 x-1)(x+2) \\
& =\left(2 x^{2}+3 x-2\right) \mathrm{m}^{2}
\end{aligned}
$$

Total Cost $=50\left(2 x^{2}+3 x-2\right)$

$$
=\operatorname{Rs}\left(100 x^{2}+150 x-100\right)
$$

17. $l=(2 x+1) \mathrm{m}$
$b=(5 x) \mathrm{m}$

Area $=$?
Area $=5 x(2 x+1)=\left(10 x^{2}+5 x\right) \mathrm{m}^{2}$
If $x=3$,
Area $=10(3)^{2}+5(3)=90+15=105 \mathrm{~m}^{2}$
Since $105 \mathrm{~m}^{2}>100 \mathrm{~m}^{2}$,
Hence, Hamid can have his garden.
18. Length of first board $=l_{1}=(2.5 x+3.4 y) \mathrm{m}$ length of second board $=l_{2}=(3.5 x+4.2 y) \mathrm{m}$ $x=2$
$y=1$
Asseming , $x=2$ and $y=1$,
$l_{1}=2.5(2)+3.4(1)=5+3.4=8.4 \mathrm{~m}$
$l_{2}=3.5(2)+4.2=7+4.3=11.2 \mathrm{~m}$
Since, $11.2 \mathrm{~m}>8.4 \mathrm{~m}$
Hence, 2nd board is larger.

Exercise 7C

1. (i) distributive (ii) a and b
(iii) 2 (two)
(iv) $8 x^{4}-3 x$
(v) $x^{2}-14 x+45$.
2. (i) False

$$
\begin{aligned}
& a(a+2)+1(a+2) \\
& =a^{2}+2 a+2 \\
& =a^{2}+3 a+2
\end{aligned}
$$

(ii) True
(iii) False

$$
\begin{aligned}
& \left(3 x^{2}+5 x\right)(2 x+y) \\
& =3 x^{2}(2 x+y)+5 x(2 x+y) \\
& =6 x^{3}+3 x^{2} y+10 x^{2}+5 x y
\end{aligned}
$$

(iv) True

$$
\begin{gathered}
\left.m+6 \begin{array}{c}
3 m-2 \longrightarrow \\
\begin{array}{l}
3 m^{2}+16 m-12
\end{array} \\
3 m^{2}+18 m \quad \downarrow \\
\frac{-}{0-2 m-12} \\
-2 m-12 \\
+\quad+ \\
\\
\begin{array}{c}
+
\end{array}
\end{array}\right)
\end{gathered}
$$

(v) True

$$
\begin{aligned}
& x^{2} \frac{5 x^{2}-5 x+3}{5 x^{4}-5 x^{3}+3 x^{2}} \\
& \begin{array}{l}
5 x^{4} \quad \downarrow \\
\hline 0-5 x^{3}
\end{array} \\
& -5 x \\
& +\frac{\downarrow}{0+3 x^{2}} \\
& +3 x^{2} \\
& \xrightarrow{-} \text { OO } \text { no remainder }
\end{aligned}
$$

3.
4.

$$
\begin{aligned}
& a + b \longdiv { a + b } \frac { a } { a ^ { 2 } + 2 a b + b ^ { 2 } } \\
& a^{2}+a b \\
& \frac{-}{a b+b^{2}} \\
& a b+b^{2} \\
& -\frac{-}{0}
\end{aligned}
$$

$$
\begin{array}{r}
a - b \longdiv { a - b } \begin{array} { r }
{ a ^ { 2 } - 2 a b + b ^ { 2 } } \\
{ a ^ { 2 } - a b } \\
{ \frac { - + } { - a b + b ^ { 2 } } } \\
{ - a b + b ^ { 2 } } \\
{ + \frac { - } { 0 } }
\end{array}
\end{array}
$$

5.

> Helpful Hint
$a^{2}(a-b)=a^{3}-a^{2} b, \quad a b(a-b)=a^{2} b-a b^{2}$
$b^{2}(a-b)=a b^{2}-b^{3}$

$$
\begin{gathered}
a-b \sqrt{a^{2}+a b+b^{2}} \\
\begin{array}{l}
a^{3}-b^{3}-a^{2} b \\
-+ \\
-b^{3}+a^{2} b \\
+a^{2} b-a b^{2} \\
\frac{-b^{3}+a b^{2}}{+}+a b^{2}
\end{array} \\
\frac{-b^{3}}{0}
\end{gathered}
$$

6.

$$
\begin{aligned}
& \begin{array}{c}
a^{2}-a b+b^{2} \\
a+\frac{b}{a^{3}+b^{3}} \\
a^{3} \quad a^{2} b
\end{array} \\
& \frac{-\quad-}{b^{3}-a^{2} b} \\
& -a^{2} b-a b^{2} \\
& \frac{+\quad+}{b^{3}+a b^{2}} \\
& \begin{array}{ll}
\begin{array}{ll}
b^{3} & +a b^{2} \\
-\quad- \\
\hline
\end{array} \quad 0
\end{array}
\end{aligned}
$$

$$
\text { 7. } \begin{array}{r}
x + 2 \longdiv { x ^ { 2 } - x - 1 } \\
\begin{array}{r}
x^{3}+x^{2}-3 x-2 \\
x^{3}+2 x^{2} \\
-- \\
-x^{2}-3 x \\
-x^{2}-2 x \\
+\frac{+}{-x-2}
\end{array} \\
\begin{array}{r}
-x-2 \\
+++
\end{array}
\end{array}
$$

8.

$$
\begin{array}{r}
x - 1 \longdiv { 8 x ^ { 2 } - 2 x - 3 } \\
\frac{8 x^{3}-8 x^{2}-x+3}{-+} \downarrow \\
-2 x^{2}-x \\
-2 x^{2}+2 x \\
+\quad+ \\
-3 x+3 \\
-3 x+3
\end{array}
$$

$$
\text { 9. } \begin{aligned}
m-1 \\
m ^ { 2 } - 1 6 \longdiv { m m ^ { \beta } - m ^ { 2 } - 1 6 \not 2 m + 1 6 } \\
+\not n^{3}-16 m
\end{aligned}
$$

$$
\begin{array}{ll}
-\quad+ \\
-m)^{2} & +16 / \\
-m^{2} & +16
\end{array}
$$

$$
+
$$

\qquad
0
10.

$$
\begin{aligned}
& \begin{array}{c}
\quad a^{2}-a b-a c+b^{2}+c^{2}-b c=a^{2}+b^{2}+c^{2}-a b-b c-c a \\
a + b + c \longdiv { } \begin{array} { c }
{ a ^ { 3 } + b ^ { 3 } + c ^ { 3 } - 3 a b c } \\
{ + a ^ { 3 } - \downarrow } \\
{ } \\
{ \frac { - \downarrow } { } + a ^ { 2 } b + a ^ { 2 } c } \\
{ b ^ { 3 } + c ^ { 3 } - 3 a b c - a ^ { 2 } b - a ^ { 2 } c }
\end{array}
\end{array} \\
& \frac{\downarrow \nabla_{+}^{-a b c}+a^{2} b}{+b^{3}+c^{3}-2 a b c} \\
& \downarrow \\
& \begin{array}{ccc}
+b^{3}+c^{3}-2 a b c \\
-a b c & -a^{2} g \\
+ & -\phi^{2} c & +a b^{2} \\
+b^{3}+c^{3}-a b c & \downarrow & +a c^{2} \\
+b^{3} \downarrow & \downarrow & +a b b^{2}+a c^{2} \\
- & +d b^{2} & \downarrow+c b^{2} \\
\hline+c^{3}-a b c & - & +a c^{2}-c b^{2}
\end{array}
\end{aligned}
$$

11.

Helpful Hint
Leave the space for decreasing powers of x
12.

$$
\begin{array}{r}
8 x^{3}+4 x^{2}+2 x+1 \begin{array}{l}
-2 x+1 \\
\begin{array}{l}
-16 x^{4} \\
+\lambda 6 x^{4}-8 x^{3}-4 x^{2}-2 x
\end{array} \\
-
\end{array} \\
\begin{array}{r}
+8 x^{3}+4 x^{2}+2 x+1
\end{array} \\
+8 x^{3}+4 x^{2}+2 x+1 \\
-\quad-
\end{array}
$$

14. $\begin{array}{rl}2 x+3 x+9 & x-3 \\ \begin{array}{l}x^{3} / 3 \\ +x^{3}+3 x^{2}+9 x \\ -27\end{array} \\ & -3 x^{2}-9 x-27\end{array}$

$$
-3 x^{2}-9 x-277
$$

$$
\frac{+\quad+\quad}{0}
$$

$$
\begin{aligned}
& x+y-1 \begin{array}{l}
x^{2}-x y+y^{2}+x+y+1 \\
+x^{3}+x^{2} y
\end{array} \\
& \frac{-}{-x^{2} y}+\frac{+}{-y^{3}+3 x y-1+x^{2}} \\
& -x^{2} y-x y^{2}+x y \\
& \begin{array}{lll}
+ & + & - \\
& +x y^{2} & +y 3 /+2 x y-1+x^{2} \\
& +x y^{2} & +y^{3}
\end{array} \\
& -y^{2} \\
& +2 x y-1+x^{2} y+y^{2} \\
& \begin{array}{llll}
& +x y & +x^{2} & -x \\
- & - & - & + \\
\hline
\end{array}
\end{aligned}
$$

15.

$$
\begin{array}{r}
a - 2 \longdiv { a ^ { 2 } - 2 a + 4 } \\
\begin{array}{r}
a^{3}+0 a^{2}+0 a-8 \\
a^{3}-2 a^{2} \\
-\quad+ \\
2 a^{2}-0 a \\
2 a^{2}-4 a \\
+\quad+
\end{array} \\
\frac{4 a-8}{4 a-8} \\
\frac{-\quad+}{0}
\end{array}
$$

16.

$$
\begin{array}{r}
a+2 \begin{array}{r}
a^{2}+2 a b+b^{2} \\
\begin{array}{l}
a^{3}+3 a^{3} b+3 a b^{2}+b^{3} \\
a^{\beta}+a^{2} b
\end{array} \\
\frac{--}{+2 a^{2} b /+3 a b^{2}} \\
+2 a^{2} b+2 a b^{2} \\
-\quad- \\
+a b^{2}+b b^{3} \\
+a b^{2}+b^{3} \\
-\quad- \\
-
\end{array}
\end{array}
$$

17.

$$
\begin{aligned}
& x - 2 y \longdiv { 3 x ^ { 2 } - 5 x y + y ^ { 2 } } \begin{array} { l }
{ 3 x ^ { 3 } - 1 1 x ^ { 2 } y + 1 1 x y ^ { 2 } - 2 y ^ { 3 } } \\
{ 3 x ^ { 3 } - 6 x ^ { 2 } y }
\end{array} \\
& \frac{-+}{-5 x^{2} y+11 x y^{2}} \\
& \begin{array}{r}
\begin{array}{l}
-5 x^{2} y+10 x y^{2} \\
+
\end{array}+\begin{array}{l}
+x y^{2}-2 y y^{2} \\
+x y^{2}-2 y^{3}
\end{array} \\
\frac{-\quad+}{0}
\end{array}
\end{aligned}
$$

18.

\therefore there are $2 x-3$ pencils in a box.
19.

$$
\begin{aligned}
& a + 5 \longdiv { a + 6 } \begin{array} { c }
{ \begin{array} { c }
{ a ^ { 2 } / + 1 1 a + 3 0 } \\
{ + a ^ { 2 } + 5 a }
\end{array} }
\end{array} \\
& \begin{array}{l}
+6 a+30 \\
+6 a+80
\end{array} \\
& 0 \\
& \therefore \text { Sana can buy } a+6 \text { dolls in Rs }\left(a^{2}+11 a+30\right)
\end{aligned}
$$

Multiple Choice Questions 7

1. B
$(a+1)(a+2)=a(a+2)+1(a+2)$
$=a^{2}+2 a+a+2$
$=a^{2}+3 a+2$
2. A

3. D
4. C

Helpful Hint

Divide first term of the dividend with the first
term of the divisor.

$$
\frac{2 x^{2}}{x}=2 x
$$

5. A
$=x^{3}+2 x^{2}+x^{2}+2 x$
$=x^{3}+3 x^{2}+2 x$

Factorisation of Algebraic Expressions

Exercise 8A

1. (i) $2 a+1$
$(2 a+1)^{2}=(2 a)^{2}+2(2 a)+(1)^{2}$ [using the identity $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$

$$
(2 a+1)^{2}=4 a^{2}+4 a+1
$$

(ii) $3 b+2 c$

$$
\begin{gathered}
(3 b+2 c)^{2}=(3 b)^{2}+2(3 b)(2 c)+(2 c)^{2} \\
=9 b^{2}+12 b c+4 c^{2}
\end{gathered}
$$

(iii) $2 p^{2}+3 q^{2}$
$\left(2 p^{2}+3 q^{2}\right)^{2}=\left(2 p^{2}\right)^{2}+2\left(2 p^{2}\right)\left(3 q^{2}\right)+\left(3 q^{2}\right)^{2}$
$=4 p^{4}+12 p^{2} q^{2}+9 q^{4}$
2

$$
\begin{aligned}
& \text { All the sums have been solved by applying } \\
& \text { the identity }(a+b)^{2}=a^{2}+2 a b+b^{2} \\
& \\
& =\left(3 p^{2}+12 p q+4 q^{2}\right. \\
& = \\
& =(3 p)^{2}+2(3 p)(2 q)+(2 q)^{2} \\
& = \\
& \text { (i) }(3 p+2 q)^{2} \\
& \text { (ii) } \begin{aligned}
& 4 x^{2}+4 x y+y^{2} \\
= & (2 x)^{2}+2(x)(y)+(y)^{2} \\
= & (2 x+y)^{2} \\
= & (2 x+y)(2 x+y)
\end{aligned}
\end{aligned}
$$

(iii) $25 p^{2}+10 p q+q^{2}$
$=(5 p)^{2}+2(5 p)(q)+(q)^{2}$
$=(5 p+q)^{2}$
$=(5 p+q)(5 p+q)$
(iv) $36 x^{2}+24 x y+4 y^{2}$
$=(6 x)^{2}+2(6 x)(2 y)+(2 y)^{2}$
$=(6 x+2 y)^{2}$
$=(6 x+2 y)(6 x+2 y)$
(v) $x^{2}+2 x y+y^{2}$

$$
\begin{aligned}
& =(x)^{2}+2(x)(y)+(y)^{2} \\
& =(x+y)^{2} \\
& =(x+y)(x+y)
\end{aligned}
$$

3.

(i) $16 a^{2}+24 a b+9 b^{2}$, When $a=4, b=3$
$=(4 a)^{2}+2(4 a)(3 b)+(3 b)^{2}$
$=(4 a+3 b)^{2}\left[\right.$ using formula $a^{2}+2 a b+$ $\left.b^{2}=(a+b)^{2}\right]$
$=(4 \times 4+3 \times 3)^{2}$ [substituting $a=4$ and $b=3$]
$=(16+9)^{2}$
$=(25)^{2}$
$=625$
(ii)

$$
\begin{aligned}
& 4 m^{4}+12 m^{2} n^{2}+9 n^{4}, \text { When } m \\
& =\frac{1}{2} \text { and } n=\frac{1}{3} \\
& =4 m^{4}+12 m^{2} n^{2}+9 n^{4} \\
& \left.=\left(2 m^{2}\right)^{2}+2\left(2 m^{2}\right)\left(3 n^{2}\right)+3 n^{2}\right)^{2} \\
& \quad \text { [using formula] } \\
& =\left(2 m^{2}+3 n^{2}\right)^{2}
\end{aligned}
$$

$$
\text { [Substitute } m=\frac{1}{2}, n=\frac{1}{3} \text {] }
$$

$$
=\left(2 \times\left(\frac{1}{2}\right)^{2}+3 \times\left(\frac{1}{3}\right)^{2}\right)^{2}
$$

$$
=\left(2 \times \frac{1}{4}+3 \times \frac{1}{9}\right)^{2}
$$

$$
=\left(\frac{1}{2}+\frac{1}{3}\right)^{2}
$$

$$
=\left(\frac{3+2}{6}\right)^{2}
$$

$$
=\left(\frac{5}{6}\right)^{2}
$$

$$
=\frac{25}{36}
$$

4. $p+\frac{1}{p}=5$

Squaring both the sides,

$$
\begin{aligned}
& \left(p+\frac{1}{p}\right)^{2}=(5)^{2} \\
& \left(p^{2}\right)+2 \times p \times \frac{1}{p}+\left(\frac{1}{p}\right)^{2}=25 \\
& p^{2}+2+\frac{1}{p^{2}}=25 \\
& p^{2}+\frac{1}{p^{2}}=25-2 \\
& p^{2}+\frac{1}{p^{2}}=23
\end{aligned}
$$

Hence, the required result is proved.
5. Given that,
$a+b=5$
Squaring both the sides
$(a+b)^{2}=(5)^{2}$
$a^{2}+2 a b+b^{2} \quad=25 \quad$ [using formula]
\therefore we have $a b=4$
$a^{2}+2 \times 4+b^{2}=25$
$a^{2}+b^{2}$
= $25-8$
$a^{2}+b^{2}$

$$
=17
$$

$\left(a^{2}+b^{2}\right)^{2}$

$$
=(17)^{2}
$$

Squaring both the sides
$a^{4}+2 a^{2} b^{2}+b^{4}=289 \quad$ [using formula]
$a^{4}+2 \times(4)^{2}+b^{4}=289$
$a^{4}+32 \times \mathrm{b}^{4}=289$
$a^{4}+b^{4}=289-32=257$
Hence, $a^{2}+b^{2}=17$ and $a^{4}+b^{4}=257$
6. Given that,
$2 a b+5 c d=5$ and $a b c d=1$
Squaring both the sides
$(2 a b+5 c d)^{2}=(5)^{2}$
$(2 a b)^{2}+2(2 a b)(5 c d)+(5 c d)^{2}=25$,
$4 a^{2} b^{2}+20 a b c d+25 c^{2} d^{2}=25$
\therefore we have $a b c d=1$,

$4 a^{2} b^{2}+25 c^{2} d^{2}+20$	$=25$
$4 a^{2} b^{2}+25 c^{2} d^{2}$	$=25-20$
$4 a^{2} b^{2}+25 c^{2} d^{2}$	$=5$

7. (i) 503×503

$$
\begin{aligned}
& =(503)^{2} \\
& =(500+3)^{2}
\end{aligned}
$$

$=(500)^{2}+2(500)(3)+(3)^{2}$
[using identity $(a+b)^{2}$]
$=250000+3000+9$
$=253009$
(ii) 1005×1005
$=(1005)^{2}$
$=(1000+5)^{2}$
$=(1000)^{2}+2(1000)(5)+(5)^{2}$
$=1000000+10000+25$
$=1010025$
(iii) 904×904
$=(904)^{2}$
$=(900+4)^{2}$
$=(900)^{2}+2(900)(4)+(4)^{2}$
$=810000+7200+16$
$=817216$
8.

Helpful Hint:
Use identity $a^{2}-2 a b+b^{2}=(a-b)^{2}$
(i) $9 x^{2}-12 x y+4 y^{2}$
$=(3 x)^{2}-2 \times 3 x \times 2 y+(2 y)^{2}$
$=(3 x-2 y)^{2}$
(ii) $36 a^{2}-24 a+4$
$=(6 a)^{2}-2 \times 6 a \times 2+(2)^{2}$
$=(6 a-2)^{2}$
(iii) $16 x^{2}-8 x y+y^{2}$
$=(4 x)^{2}-2 \times 4 x \times y+(y)^{2}$
$=(4 x-y)^{2}$
(iv) $4 a^{2}-20 a b+25 b^{2}$
$=(2 a)^{2}-2 \times 2 a \times 5 b+(5 b)^{2}$
$=(2 a-5 b)^{2}$
(v) $x^{2}-6 x y+9 y^{2}$
$=(x)^{2}-2 \times x \times 3 y+(3 y)^{2}$
$=(x-3 y)^{2}$
9. (i) $25 a^{2}-10 a+1$, When $\mathrm{a}=\frac{1}{5}$
$25 a^{2}-10 a+1=(5 a)^{2}-2(5 a)(1)+(1)^{2}$
$=(5 a-1)^{2}$ [using formula]
$=\left(5 \times \frac{1}{5}-1\right)^{2}$ [putting $a=\frac{1}{5}$]
$=(1-1)^{2}=0$
(ii) $4(a+b)^{2}-20(a+b)+25$ when $a=2, b=1$

$$
\begin{aligned}
& =\{2(a+b)\}^{2}-2 \times 2(a+b) \times 5+(5)^{2} \\
& =\{2(a+b)-5\}^{2}
\end{aligned}
$$

Substitute $\mathrm{a}=2, b=1$

$$
=(6-5)^{2}
$$

(iii) $36(l+m)^{2}-48 n(l+m)+16 n^{2}$,

When $l=\frac{1}{2}, m=\frac{1}{3}$ and $n=\frac{1}{4}$
$36(l+m)^{2}-48 n(l+m)+16 n^{2}$
$=\{6(l+m)\}^{2}-2 \times 6(l+m) \times 4 n+(4 n)^{2}$
$=\{6(l+m)-4 n\}^{2}$ [using formula]
$\left\{\right.$ Substitute $\left.l=\frac{1}{2}, m^{2} \frac{1}{3}, n^{2} \frac{1}{4}\right\}$
$=\left\{6 \times\left(\frac{1}{2}+\frac{1}{3}\right)-4 \times \frac{1}{4}\right\}^{2}$
$=\left\{6 \times \frac{5}{6}-4 \times \frac{1}{4}\right\}^{2}$
$=(5-1)^{2}$
$=(4)^{2}$
$=16$
10. (i) 57×57

$$
\begin{aligned}
& =(60-3)(60-3) \\
& =(60-3)^{2}
\end{aligned}
$$

(applying formula)
$=(60)^{2}-2 \times 60 \times 3+(3)^{2}$
$=3600-360+9$
$=3249$
(ii) 994×994
$=(1000-6)(1000-6)$
$=(1000-6)^{2}$
$=(1000)^{2}-2 \times 1000 \times 6+(6)^{2}$
$=1000000-12000+36$
$=988036$
(iii) 9997×9997
$=(10000-3)(10000-3)$
$=(10000-3)^{2}$
$=(10000)^{2}-2(10000)(3)+(3)^{2}$
$=100000000-60000+9$
= 99940009
11. Given $\mathrm{a}-\frac{1}{a}=2$ then show that
(i) Show that $a^{2}+\frac{1}{a^{2}}=6$
$a-\frac{1}{a}=2$
$\left(a-\frac{1^{a}}{a}\right)^{2}=(2)^{2}$ [squaring both the sides]

$$
\begin{aligned}
& a^{2}-2 \times a \times \frac{1}{a}+\frac{1}{a^{2}}=4 \\
& a^{2}+\frac{1}{a^{2}}=4+2 \\
& a^{2}+\frac{1}{a^{2}}=6
\end{aligned}
$$

Hence proved.
(ii) $a^{4}+\frac{1}{a^{4}}=34$

$$
a-\frac{1}{a}=2
$$

(squaring both the sides)
$\left(a-\frac{1}{a}\right)^{2}=4$
$a^{2}+\frac{1}{a^{2}}=6$
(squaring both the sides)
$\left(a^{2}+\frac{1}{a^{2}}\right)^{2}=(6)^{2}$
$a^{4}+2+\frac{1}{a^{4}}=36$
$a^{4}+\frac{1}{a^{4}}=36-2=34$
Hence, proved.
(iii) $\left(a+\frac{1}{a}\right)^{2}=8$
we have
$\left(a-\frac{1}{a}\right)=2$
(squaring both the sides)
$\mathrm{a}^{2}-2+\frac{1}{a^{2}}=4$
$a^{2}-2+\frac{1}{a^{2}}+4=4+4$
(adding 4 on both the sides)
$a^{2}+2+\frac{1}{a^{2}}=8$
$\left(a+\frac{1}{a}\right)^{2}=8$
Hence, proved.

Helpful Hint:
Use the identity $(a+b)(a-b)=a^{2}-b^{2}$
12. (i) $(a+1)(a-1)\left(a^{2}+1\right)$
$=\left\{(a)^{2}-(1)^{2}\right\}\left(a^{2}+1\right)$ [using identity]
$=\left(a^{2}-1\right)\left(a^{2}+1\right)$
$=\left(a^{2}\right)^{2}-(1)^{2}$
$=a^{4}-1$
(ii) $=(a+b)(a-b)\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}\right)$
$=\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}\right)$
$=\left(a^{4}-b^{4}\right)\left(a^{4}+b^{4}\right) \quad$ [using identity]
$=a^{8}-b^{8}$
(iii) $=(2 p+3 q)(2 p-3 q)\left(4 p^{2}+9 q^{2}\right)$

$$
\left(16 p^{2}+81 q^{2}\right)
$$

$=\left(4 p^{2}-9 q^{2}\right)\left(4 p^{2}+9 q^{2}\right)\left(16 p^{4}+81 q^{4}\right)$
$=\left(16 p^{4}-81 q^{4}\right)\left(16 p^{4}+81 q^{4}\right)$
$=256 p^{8}-6561 q^{8}$
13. $81 p^{2}-49 q^{2}$
$81 p^{2}-49 q^{2}=(9 p-7 q)(9 p+7 q)$
using identity $a^{2}-b^{2}=(a-b)(a+b)$
14. (i) $(3 a+b)(3 a-b)$

$$
\begin{aligned}
& =(3 a)^{2}-(b)^{2} \\
& =9 a^{2}-b^{2}
\end{aligned}
$$

(ii) $(5 a+3 b)(5 a-3 b)$

$$
\begin{aligned}
& =(5 a)^{2}-(3 b)^{2} \\
& =25 a^{2}-9 b^{2}
\end{aligned}
$$

(iii) $(2 x+3 y)(2 x-3 y)$

$$
\begin{aligned}
& =(2 x)^{2}-(3 y)^{2} \\
& =4 x^{2}-9 y^{2}
\end{aligned}
$$

Exercise 8B

1. $p^{2} q+p q^{2}$
$=p q(p+q)$
Taking out common factors.
2. $3 x^{3}-15 x^{2} y$
$=3\left(x^{3}-5 x^{2} y\right)$
$=3 x^{2}(x-5 y)$
3. $45 y^{4}-9 x y^{3}$
$=9\left(5 y^{4}-x y^{3}\right)$
$=9 y^{3}(5 y-x)$
4. $6 p^{2} q+12 p q^{2}$
$=6\left(p^{2} q+2 p q^{2}\right)$
$=6 p q(p+2 q)$
5. $5 a^{4} b^{2}+15 a^{2} b^{4}$
$=5\left(a^{4} b^{2}+3 a^{2} b^{4}\right)$
$=5 a^{2} b^{2}\left(a^{2}+3 b^{2}\right)$
6. $x y+x+y+1$
$=(x y+x)+(y+1)$

, - $\frac{1}{}$ Helpful Hint:

Grouping the terms
$=x(y+1)+(y+1)$
$=(x+1)(y+1)$
7. $a m^{3}-a m^{2}-m+1$
$=a m^{2}(m-1)-(m-1)$
$=(m-1)\left(a m^{2}-1\right)$
8. $4 a^{2}+12 a b+9 b^{2}$

$$
\begin{aligned}
& \text { Using formula } a^{2}+2 a b+b^{2}= \\
& =(2 a)^{2}+2(2 a)(3 b)+(3 b)^{2} \\
& =(2 a+3 b)^{2} \\
& =(2 a+3 b)(2 a+3 b) \\
& \text { 9. } x^{2}-(p+q) x+p q \\
& =x^{2}-p x-q x+p q \\
& =x(x-p)-q(x-p) \\
& =(x-p)(x-q)
\end{aligned}
$$

(Using formula $a^{2}+2 a b+b^{2}=(a+b)^{2}$
10. $a b c-a b-c+1$

Helpful Hint:

Taking $a b$ common, from the first two terms.
$=a b(c-1)-(c-1)$
Taking ($c-1$) common,
$=(c-1)(a b-1)$
11. $(a+b)(p+q+r)+(b+c)(p+q+r)+$ $(c+a)(p+q+r)$
Taking $(p+q+r)$ common, we get
$=(p+q+r)(a+b+b+c+c+a)$
$=(p+q+r)(2 a+2 b+2 c)$
$=2(a+b+c)(p+q+r)$

Exercise 8C

Helpful Hint:
($a^{2}-b^{2}=(a+b)(a-b)$

1. $9 x^{2}-25 y^{2}$
$\left.=\left(3 x^{1} 5 y\right) 3 x+5 y\right)$
2. $1-9 c^{2}$
$=(1-3 c)(1+3 c)$
3. $m^{2} n^{2}-p^{2}$

$$
\begin{aligned}
& =(m n)^{2}-(p)^{2} \\
& =(m n-p)(m n+p)
\end{aligned}
$$

4. $1-(p+q)^{2}$

$$
\begin{aligned}
& =(1)^{2}-(p+q)^{2} \\
& =(1-p-q)(1+p+q)
\end{aligned}
$$

5. $(x+y)^{2}-(x-y)^{2}$

$$
\begin{aligned}
& =(x+y-x+y)(x+y+x-y) \\
& =(2 y)(2 x) \\
& =4 x y
\end{aligned}
$$

6. $9 x^{2}-(2 x-3 y)^{2}$

$$
\begin{aligned}
& =(3 x)^{2}-(2 x-3 y)^{2} \\
& =(3 x-2 x+3 y)(3 x+2 x-3 y) \\
& =(x+3 y)(5 x-3 y)
\end{aligned}
$$

7. $(a+b-c)^{2}-(a-b+c)^{2}$

$$
\begin{aligned}
& =(a+b-c+a-b+c)(a+b-c-a+b-c) \\
& =(2 a)(2 b-2 c) \\
& =2(2 a)(b-c) \\
& =4 a(b-c)
\end{aligned}
$$

8. $3 a(3 a-2 b)+b^{2}-c^{2}$

$$
\begin{aligned}
& =9 a^{2}-6 \mathrm{a} b+b^{2}-c^{2} \\
& =(3 a-b)^{2}-(c)^{2} \\
& =(3 a-b+c)(3 a-b-c)
\end{aligned}
$$

9. $9(p-q)^{2}-25(q-r)^{2}$

$$
\begin{aligned}
& =\{3(p-q)\}^{2}-\{5(q-r)\}^{2} \\
& =\{3(p-q)+5(q-r)\}\{3(p-q)-5(q-r)\} \\
& =(3 p-3 q+5 q-5 r)(3 p-3 q-5 q+5 r) \\
& =(3 p+2 q-5 r)(3 p-8 q+5 r)
\end{aligned}
$$

10. $a^{8}-b^{8}$

$$
\begin{aligned}
& =\left(a^{4}-b^{4}\right)\left(a^{4}+b^{4}\right) \\
& =\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}\right) \\
& =(a-b)(a+b)\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}\right)
\end{aligned}
$$

11. $a^{2}-1+2 b-b^{2}$

$$
\begin{aligned}
& =a^{2}-\left(b^{2}-2 b+1\right) \\
& =a^{2}-(b-1)^{2}
\end{aligned}
$$

Helpful Hint:

(using $\left.a^{2}-2 a b+b^{2}=(a-b)^{2}\right)$

$$
=(a-b+1)(a+b-1)
$$

12. $4 x^{4}+81=\left(2 x^{2}\right)+(9)^{2}$
[completing the square].

$$
\begin{aligned}
= & \left(2 x^{2}\right)^{2}+2 \times 2 x^{2} \times 9+(9)^{2}-2 \times 2 x^{2} \times 9 \\
= & \left(2 x^{2}+9\right)^{2}-36 x^{2} \\
= & \left(2 x^{2}+9\right)^{2}-(6 x)^{2} \\
& \left.\quad \quad \text { using } a^{2}-b^{2}=(a+b)(a-b)\right) \\
= & \left(2 x^{2}+9+6 x\right)\left(2 x^{2}+9-6 x\right) \\
= & \left(2 x^{2}+6 x+9\right)\left(2 x^{2}-6 x+9\right)
\end{aligned}
$$

13. $9 x^{4}-3 x^{2}+1$

Helpful Hint:

Split the middle term to complete the square. ,

-- $\int_{\text {Helpful Hint: }}$

$-9 x^{2}+6 x^{2}=-3 x^{2}$
$=9 x^{4}-9 x^{2}+6 x^{2}+1$
[by rearranging the terms]
$=9 x^{4}+6 x^{2}+1-9 x^{2}$
$=\left(9 x^{4}+6 x^{2}+1\right)-9 x^{2}$ [By grouping]
$=\left(3 x^{2}+1\right)^{2}-9 x^{2}$
$=(3 x+1)^{2}-(3 x)^{2}$
$=\left(3 x^{2}+1+3 x\right)\left(3 x^{2}+1-3 x\right)$
$=\left(3 x^{2}+3 x+1\right)\left(3 x^{2}-3 x+1\right)$
14. $x^{4}+x^{2}+1$

Splitting the middle term:

15. $x^{4}+3 x^{2} y^{2}+4 y^{4}$
$=x^{4}+3 x^{2} y^{2}+4 y^{4}$
[splitting the middle term]
$4 x^{2} y^{2} \quad-x^{2} y^{2}$

Helpful Hint:

(using $3 x^{2} y^{2}=4 x^{2} y^{2}-x^{2} y^{2}$)
$=x^{4}+4 x^{2} y^{2}-x^{2} y^{2}+4 y^{4}$
$=x^{4}+4 x^{2} y^{2}+4 y^{4}-x^{2} y^{2}$
(rearranging the terms)
$=\left(x^{4}+4 x^{2} y^{2}+4 y^{2}\right)-x^{2} y^{2}$
(grouping the terms)
$=\left(x^{2}+2 y^{2}\right)^{2}-(x y)^{2}$
$=\left(x^{2}+2 y^{2}+x y\right)\left(x^{2}+2 y^{2}-x y\right)$
$=\left(x^{2}+x y+2 y^{2}\right)\left(x^{2}-x y+2 y^{2}\right)$
16. $(a+b)^{4}+4$
$=$ Let $a+b=x$, then
$=(a+b)^{4}+4=x^{4}+4$
$=\left(x^{2}\right)^{2}+(2)^{2}$
$=\left(x^{2}\right)^{2}+4 x^{2}+(2)^{2}-4 x^{2}$
Helpful Hint:
Add $4 x^{2}$ to make a complete square and 1 subtract the same.
$=\left(x^{2}+2\right)^{2}-(2 x)^{2}$
$=\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)$
[Substituting $x=a+b$]
$=\left\{(a+b)^{2}+2(a+b)+2\right\}$
17. $x^{4}+8 x^{2}+144$

$=x^{4}+24 x^{2}+144-16 x^{2}$
$=\left(x^{2}\right)^{2}+24 x^{2}+(12)^{2}-16 x^{2}$
[completing the square]
$=\left(x^{2}+12\right)^{2}-16 x^{2}$
$=\left(x^{2}+12\right)^{2}-(4 x)^{2}$
$=\left(x^{2}+12+4 x\right)\left(x^{2}+12-4 x\right)$
$=\left(x^{2}+4 x+12\right)\left(x^{2}-4 x+12\right)$
18. $3 a^{4}-18 a^{2} b^{2}+3 b^{4}$
$\because 3$ is a common factor.
$=3\left(a^{4}-6 a^{2} b^{2}+b^{4}\right)$
$=3\left(a^{4}-2 a^{2} b^{2}-4 a^{2} b^{2}-b^{4}\right)$
[breaking the middle term to obtain a perfect square]
$=3\left(a^{4}-2 a^{2} b^{2}+b^{4}-4 a^{2} b^{2}\right)$
[rearranging the terms]
$=3\left\{\left(a^{4}-2 a^{2} b^{2}+b^{4}\right)-4 a^{2} b^{2}\right\}$
$\because a^{2}-2 a b+b^{2}=(a-b)^{2}$
$=3\left\{\left(a^{2}-b^{2}\right)^{2}-(2 a b)^{2}\right\}$
$\left.=3\left\{a^{2}-b^{2}+2 a b\right)\left(a^{2}-b^{2}-2 a b\right)\right]$
$=3\left(a^{2}+2 a b-b^{2}\right)\left(a^{2}-2 a b-b^{2}\right)$
$199 a^{2}-4 b^{2}+16 c^{2}-1-4 b-24 a c$
$=\left(9 a^{2}-24 a c+16 c^{2}\right)-\left(4 b^{2}+4 b+1\right)$
[rearranging and grouping the terms]
$=\left\{(3 a)^{2}-2 \times 3 a \times 4 c+(4 c)^{2}\right\}-$
$\left\{(2 b)^{2}+2 \times 2 b \times 1+(1)^{2}\right\}$
$=(3 a-4 c)^{2}-(2 b+1)^{2}$
$=(3 a-4 c+2 b+1)(3 a-4 c-2 b-1)$
$=(3 a+2 b-4 c+1)(3 a-2 b-4 c-1)$
20. Option A is correct.
21. Option C is correct.
22. Option D is correct.
23. Option D is correct.
24. Option A is correct.

Exercise 8D

1. (i) $(x+3)^{3}=$?

$$
\begin{aligned}
& \text {,-- } \text { - Helpful Hint } \\
& \left((a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\right. \\
& (x+3)^{3}=x^{3}+3 x^{2}(3)+3 x(3)^{2}+3^{3} \\
& =x^{3}+9 x^{2}+27 x+27 \\
& \text { (ii) } \quad(a+4 b)^{3} \\
& =a^{3}+3 a^{2}(4 b)+3 a(4 b)^{2}+(4 b)^{3} \\
& =a^{3}+12 a^{2} b+48 a b^{2}+64 b^{3} \\
& \text { (iii) }(3 x+2 y)^{3} \\
& =(3 x)^{3}+3(3 x)^{2}(2 y)+3(3 x)(2 y)^{2}+(2 y)^{3} \\
& =27 x^{3}+54 x^{2} y+36 x y^{2}+8 y^{3}
\end{aligned}
$$

(iv) $\left(x^{2}+2 y\right)^{3}$
$=\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}(2 y)+3 x^{2}(2 y)^{2}+(2 y)^{3}$
$=x^{6}+6 x^{4} y+12 x^{2} y^{2}+8 y^{31}$
(v) $\quad(a x+b y)^{3}$
$=(a x)^{3}+3(a x)^{2}(b y)+3(a x)(b y)^{2}+(b y)^{3}$
$=a^{3} x^{3}+3 a^{2} x^{2} b y+3 a x b^{2} y^{2}+b^{3} y^{3}$
(vi) $\left(a^{2}+b c\right)^{3}$
$=\left(a^{2}\right)^{3}+3\left(a^{2}\right)^{2}(b c)+3\left(a^{2}\right)(b c)^{2}+(b c)^{3}$
$=a^{6}+3 a^{4} b c+3 a^{2} b^{2} c^{2}+b^{3} c^{3}$
(vii) $\left(a^{2}+b^{2}\right)^{3}$
$=\left(a^{2}\right)^{3}+3\left(a^{2}\right)^{2}\left(b^{2}\right)+3\left(a^{2}\right)\left(b^{2}\right)^{2}+\left(b^{2}\right)^{3}$
$=a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}$
(viii) $42^{3}=(40+2)^{3}$
$=(40)^{3}+3(40)^{2}(2)+3(40)(2)^{2}+(2)^{3}$
$=64000+9600+480+8$
$=74088$
(ix) $(105)^{3}=(100+5)^{3}$
$=(100)^{3}+3(100)^{2}(5)+3\left(100(5)^{2}+(5)^{3}\right.$
$=1000000+150000+7500+125$
$=1157625$
2. (i) $a^{3}+9 a^{2}+27 a+30$

Substitute $a=3$
$(3)^{3}+9(3)^{2}+27(3)+30$
$=27+81+81+30$
$=219$
(ii) $(31)^{3}+3 \times(31)^{2} \times 19+3 \times 31 \times(19)^{2}+(19)^{3}$
$=29791+3 \times 961 \times 19+93 \times 361+6859$
$=29791+54777+33573+6859$
$=125000$
3. $x^{3}+y^{3}+24 x y=$?

Given that $x+y=8$
[Cubing both the sides]
$(x+y)^{3}=8^{3}$
by using formula,
$(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
$(x+y)^{3}=8^{3}$
$x^{3}+y^{3}+3 x y(x+y)=512$
$x^{3}+y^{3}+3 x y(8)=512$
$\therefore x^{3}+y^{3}+24 x y=512$
4. $m^{3}+n^{3}-9 m n=$?

Given that $m+n+3=0$
$m+n=-3$
[by cubing both the sides]
$(m+n)^{3}=(-3)^{3}$
$m^{3}+n^{3}+3 m n(m+n)=-27$
$m^{3}+n^{3}+3 m n(-3)=-27$
$m^{3}+n^{3}-9 m n=-27$
5. (i) $(2 x+5)^{3}$
$=(2 x)^{3}+3(2 x)^{2}(5)+3(2 x)(5)^{2}+(5)^{3}$
$=8 x^{3}+60 x^{2}+150 x+125$
(ii) $(a x-b y)^{3}$
$=(a x)^{3}-3(a x)^{2}(b y)+3(a x)(b y)^{2}-(b y)^{3}$
$=a^{3} x^{3}-3 a^{2} x^{2} b y+3 a x b^{2} y^{2}-b^{3} y^{3}$
(iii) $\left(a^{2}-b^{2}\right)^{3}$
$=\left(a^{2}\right)^{3}-3\left(a^{2}\right)^{2} b^{2}+3 a^{2}\left(b^{2}\right)^{2}-\left(b^{2}\right)^{3}$
$=a^{6}-3 a^{4} b^{2}+3 a^{2} b^{4}-b^{6}$
(iv) $\left(-7 a+2 b^{2}\right)^{3}=\left(2 b^{2}-7 a\right)^{3}$
$=\left(2 b^{2}\right)^{3}-3\left(2 b^{2}\right)^{2}(7 a)+3\left({ }^{2} b^{2}\right)(7 a)^{2}-(7 a)^{3}$
$=8 b^{6}-84 b^{4} a+294 b^{2} a^{2}-343 a^{3}$
(v) $(2 a-3 b c)^{3}$

$$
\begin{aligned}
& =(2 a)^{3}-3(2 a)^{2}(3 b c)+3(2 a)(3 b c)^{2}-(3 b c)^{3} \\
& =8 a^{3}-36 a^{2} b c+54 a b^{2} c-27 b^{3} c^{3}
\end{aligned}
$$

(vi) $\quad(1+a-2 b)^{3}=$?

Helpful Hint:

In this case make $(1+a)$ one term and $2 b$ the second term.

Let $x=1+a$ and $y=2 b$, then

$$
\begin{aligned}
x^{2} & =(1+a)^{2}=12+2 a+a^{2} \\
x^{3} & =(1+a)^{3}=13+3 a+3 a^{2}+a^{3} \\
y^{2} & =(2 b)^{2}=4 b^{2} \\
y^{3} & =8 b^{3} \\
(1 & +a+2 b)^{3}=(x-y)^{3} \\
& =x^{3}-3 x^{2} y+3 x y^{2}-y^{3}
\end{aligned}
$$

Substitute

$$
\begin{array}{ll}
x=1+9, & x^{2}=1+2 a+a^{2}, x^{3}=1+3 a+3 a^{2}+a^{3} \\
y=2 b, & y^{2}=4 b^{2} \text { and } y^{3}=8 b^{3} \\
\therefore(1+a-2 b)^{3} & =1+3 a+3 a^{2}+a^{3}-3\left(1+2 a+a^{2}\right) 2 b+3(1+a)\left(4 b^{2}\right)-8 b^{3} \\
& =1+3 a+3 a^{2}+a^{3}-6 b-12 a b-6 a^{2} b+12 b^{2}+12 a b^{2}-8 b^{3}
\end{array}
$$

(vii) $\left(x^{2}-y-z\right)^{3}=\left(x^{2}-(y+z)\right)^{3}$

Let $a=x^{2}$ and $b=y+z$,
then
$a^{2}=x^{4}, a^{3}=x^{6}$
$b^{2}=(y+z)^{2}=y^{2}+2 y z+z^{2}$
$b^{3}=(y+z)^{3}=y^{3}+3 y^{2} z+3 y z^{2}+z^{3}$
$\left[(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}+b^{3}\right]$
$\left(x^{2}-y-z\right)^{3}=x^{6}-3 x^{4}(y+z)+3 x^{2}\left(y^{2}+2 y z+z^{2}\right)-\left(y^{3}+3 y^{2} z+3 y z^{2}+z^{3}\right)$
$=x^{6}-3 x^{4} y-3 x^{4} z+3 x^{2} y^{2}+6 x^{2} y z+3 x^{2} z^{2}-y^{2}-y^{3}-3 y^{2} z-3 y z^{2}-z^{3}$
(viii) $(a-2 b-3 c)^{3}=((a-2 b)-3 c)^{3}$

Let $x=a-2 b$ and $y=3 c$, then
$x^{2}=a^{2}-4 \mathbf{a} b+b^{2}$
$x^{3}=a^{3}-3 a^{2}(2 b)+3 a(2 b)^{2}-8 b^{3}$
$=a^{3}-6 a^{2} b+6 a b^{2}-8 b^{3}$
$y^{2}=9 c^{2}$
$y^{3}=27 c^{3}$
The equation becomes,

$$
\begin{aligned}
& (x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3} \\
& \begin{aligned}
(a-2 b-3 c)^{3} & =a^{3}-6 a^{2} b+6 a b^{2}-8 b^{3}-3\left(a^{2}-4 a b+b\right) 3 c+3(a-2 b)\left(9 c^{2}\right)-27 c^{3} \\
& =a^{3}-6 a^{2} b+6 a b^{2}-8 b^{3}-9 c a^{2}+36 a b c-9 b^{2} c+27 a c^{2}-54 b c^{2} 27 c^{3}
\end{aligned}
\end{aligned}
$$

(ix) $\quad\left(p^{2}-q^{2}-r^{2}\right)^{3}=\left(\left(p^{2}-q^{2}\right)-r^{2}\right)^{3}$

Let $x=p^{2}-q^{2}$ and $y=r^{2}$
$x^{2}=\left(p^{2}\right)^{2}-2\left(p^{2}\right)\left(q^{2}\right)^{2}+\left(q^{2}\right)^{2}=p^{4}-2 p^{2} q^{2}+q^{4}$
$x^{3}=\left(p^{2}\right)^{3}-3\left(p^{2}\right)^{2}\left(q^{2}\right)+3 p^{2}\left(q^{2}\right)^{2}-\left(q^{2}\right)^{3}=p^{6}-3 p^{4} q^{2}+3 p^{2} q^{4}-q^{6}$
$y^{2}=r^{4}, \quad y^{3}=r^{6}$
The equation is
$(x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$
$\left(p^{2}-q^{2}-r^{2}\right)=p^{6}-3 p^{4} q^{2}+3 p^{2} q^{4}-q^{4}-q^{6}-3\left(p^{2}-q^{2}\right) r^{4}-r^{6}$
$=p^{6}-3 p^{4} q^{2}+3 p^{2} q^{4}-q^{6}-3 p^{2} r^{2}+6 p^{2} q^{2} r^{2}-3 q^{4} r^{2}+3 p^{2} r^{4}-3 q^{2} r^{4}-r^{6}$
(x) $\quad(198)^{3}=(200-2)^{3}$

$$
\begin{aligned}
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
& =(200)^{3}-3(200)^{2}(2)+3(200)(2)^{2}-(2)^{3} \\
& =8000000-6(40000)+600(4)-8 \\
& =8000000-240000+2400-8 \\
& =7762392
\end{aligned}
$$

(xi) $(399)^{3}=(400-1)^{3}$

$$
=(400)^{3}-3(400)^{2}(1)+3(400)(1)^{2}-(1)^{3}
$$

$$
=64000000-3(160000)+1200-1
$$

$$
=64000000-480000+1200-1
$$

$$
=63521199
$$

(xii) $999=(1000-1)^{3}$

$$
=(1000)^{3}-3(1000)^{2}(1)+3(1)^{2}(1000)-(1)^{3}
$$

$$
=1000000000-3000000+3000-1
$$

$$
997002999
$$

6. (i) Let $51=a$ and $46=b$

So the expression becomes
$a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$
and we know that
$(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$
\therefore we have
$51^{3}-3 \times 51^{2} \times 46+3 \times 46^{2} \times 51 \times 46^{3}$
$=(51-46)=5^{3}=125$
(ii) Let $31.6=a$ and $28.6=b$
$31.6^{3}-3 \times 31.6^{2} \times 28.6+3 \times 28.6^{2} \times 31.6-28.6^{3}$
(we know that $31.6 \times 31.6 \times 31.6=31.6^{3}$)
$=(31.6-28.6)^{3}$
$=3^{3}=27$
(iii) Let $5.83=a$ and $3.83=b$
$5.83^{3}-3 \times 5.83^{2} \times 3.83+3 \times 5.83 \times 3.83^{2}-3.83^{3}$
$=(5.83-3.83)^{3}$
$=2^{3}=8$
7. $p=2 q+4$
$p-2 q=4$
[Cubing both the sides]
$(p-2 q)^{3}=4^{3}$
$p^{3}-(2 q)^{3}-3(p)(2 q)(p-2 q)=64$
$p^{3}-8 q^{3}-6 p q(4)=64 \quad[p-2 q=4]$
$\therefore p^{3}-8 q^{3}-24 p q=64$
8. $\frac{a^{2}-1}{a}=1$
$\frac{a^{a}}{a}-\frac{1}{a}=1$
$a-\frac{1}{a}=1$
Cubing both the sides

$$
\left(a-\frac{1}{a}\right)^{3}=1^{3}
$$

$\left[(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)\right]$
Using above formula we have

$$
\begin{aligned}
a^{3} \frac{1}{a^{3}}-3(a)\left(\frac{1}{e}\right)\left(a-\frac{1}{a}\right) & =1 \\
a^{3}-\frac{1}{a^{3}}-3(1) & =1 \\
a^{3}-\frac{1}{a^{3}}-3 & =1 \\
\frac{a^{6}-1}{a^{3}}-4 & =0
\end{aligned}
$$

9. $x-y=4, x y=21$
$x^{3}-y^{3}=$?
$x-y=4 \quad$ [Cubing both the sides]
$(x-y)^{3}=4^{3}$
$x^{3}-y^{3}-3 x y(x-y)=64$
[substitute $x y=21$ and $x-y=4$]
$x^{3}-y^{3}-3(21)(4)=64$
$x^{3}-y^{3}-252=64$

$$
x^{3}-y^{3}=64+252
$$

$\therefore x^{3}-y^{3}=316$
10. $a^{3}-b^{3}=$?

$$
\begin{array}{ll}
a-b=2, & a^{2}+b^{2}=4 \\
a-b=2 & \text { square both the sides } \\
(a-b)^{2}=2^{2} & \\
a^{2}-2 a b+b^{2}=4 \\
a^{2}+b^{2}=4+2 a b \\
4=4+2 a b\left[a^{2}+b^{2}=4\right] \\
2 a b=4-4=0 \\
a b=0
\end{array}
$$

Now cube both the sides of
$a-b=2$
$(a-b)^{3}=2^{3}$
$a^{3}-b^{3}-3 a b(a-b)=8$
$a^{3}-b^{3}-3(0)(2)=8 \quad[a b=0, a-b=2]$
$\therefore a^{3}-b^{3}=8$

Multiple Choice Questions 8

1. Option A is correct.
2. Option C is correct.
3. Option D is correct.
4. Option D is correct.
5. Option A is correct.

Revision: Algebra

1. $(x+y)\left(x^{3}-y^{3}\right)$

$$
\begin{aligned}
& =(x+y)(x-y)\left(x^{2}+n y+y^{2}\right) \\
& =\left(x^{2}-y^{2}\right)\left(x^{2}+x y+y^{2}\right)
\end{aligned}
$$

2. (i) $(x+2 y)(x-5 y)(x-9 y)$

$$
\begin{aligned}
& =\left(x^{2}-5 x y+2 x y-10 y^{2}\right)(x-9 y) \\
& =\left(x^{2}-3 x y-10 y^{2}\right)(x-9 y) \\
& =x^{3}-9 x^{2} y-3 x^{2} y+27 x y^{2}-10 x y^{2}+90 y^{3} \\
& =x^{3}-12 x^{2} y+17 x y^{2}+90 y^{3}
\end{aligned}
$$

(ii) $(a+b+c)(b+c-a)(c+a-b)(a+b-c)$

$$
\begin{aligned}
& =\left(a b+a c-a^{2}+b^{2}+b c-a b+b c+c^{2}-a c\right)\left(a c+b c-c^{2}+a^{2}+a b-a c-a b-b^{2}+b c\right) \\
& =\left(-a^{2}+b^{2}+c^{2}+2 b c\right)\left(a^{2}-b^{2}-c^{2}+2 b c\right) \\
& =-a^{4}+a^{2} b^{2}+a^{2} c^{2}-2 a^{2} b c+a^{2} b-b^{4}-b^{2} c^{2}+2 b^{3} c+a^{2} c^{2}-b^{2} c^{2}-c^{4}+2 b c^{3}+2 a^{2} b c-2 b^{3} c-2 b c^{3} 44 b^{2} c^{2} \\
& =2 a^{2} b^{2}+2 b^{2} c^{2}+2 a^{2} c^{2}-a^{4}-b^{4}-c^{4}
\end{aligned}
$$

(iii) $\left(m^{4}-2 m^{2} n^{2}+n^{4}\right)\left(m^{3}+2 m^{2} n-n^{3}\right)$

$$
\begin{aligned}
& =m^{7}+2 m^{6} n-m^{4} n^{3}-2 m^{5} n^{2}-4 m^{4} n^{3}+2 m^{2} n^{5}+m^{3} n^{4}+2 m^{2} n^{5}-n^{7} \\
& =m^{7}+2 m^{6} n-5 m^{4} n^{3}-2 m^{5} n^{2}+4 m^{2} n^{5}+m^{3} n^{4}-n^{7}
\end{aligned}
$$

3.

$$
\begin{gathered}
a^{2}+2 a-3 \begin{array}{l}
a^{3}+2 a^{2}+7 a+20 \\
\begin{array}{l}
\begin{array}{l}
a^{5}+0 a^{4}+0 a^{3}+0 a^{2}-61 a-60 \\
a^{5}-2 a^{4}-3 a^{3} \\
-++
\end{array} \\
2 a^{4}+3 a^{3} \\
2 a^{4}-4 a^{3}-6 a^{2}
\end{array} \\
\frac{-++}{7 a^{3}+6 a^{2}-61 a} \\
7 a^{3}-14 a^{2}-21 a \\
-++ \\
20 a^{2}-40 a-60 \\
20 a^{2}-40 a-60
\end{array} \\
-\quad+\quad+
\end{gathered}
$$

4. $(2 p+3 q)^{3}-18 q\left(4 p^{2}-9 q^{2}\right)-(2 p-3 q)^{3}$

$$
\begin{aligned}
& =(2 p)^{3}+3(2 p)^{2}(3 q)+3(2 p)(3 q)^{2}+(3 q)^{3}-72 p^{2} q+162 q^{3}-\left\{(2 p)^{3}-3(2 p)^{2}(3 q)+3(2 p)(3 q)^{2}-(3 q)^{3}\right\} \\
& =8 p^{\gamma}+36 p^{2} q+54 p q^{2}+27 q^{3}-72 p^{2} q+162 q^{3}-8 p^{8}+36 p^{2} q-54 p q^{2}+27 q^{3} \\
& =216 q^{3}
\end{aligned}
$$

5. $x-y=6$

$$
\begin{array}{ll}
x^{3}-y^{3}-18 x y=? & \\
=(x-y)\left(x^{2}+x y+y^{2}\right)-18 x y & {\left[a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right]} \\
=6\left(x^{2}+x y+y^{2}\right)-18 x y & \\
=6 x^{2}+6 x y+6 y^{2}-18 x y & \\
=6 x^{2}-12 x y+6 y^{2} & \\
=6\left(x^{2}-2 x y+y^{2}\right) & \\
=6(x-y)^{2}=6 \times 6^{2} & (x-y=6) \\
=6 \times 36=216 &
\end{array}
$$

6. Since $8 x^{3}-12 x^{2}+6 x+5 x=\frac{1}{2}$

$$
\begin{aligned}
& =8\left(\frac{1}{2}\right)^{3}-12\left(\frac{1}{2}\right)^{2}+6\left(\frac{1}{2}\right)+5 \\
& =8 \times \frac{1}{8}-1^{3} \times \frac{1}{A_{1}}+\frac{3}{6} \times \frac{1}{2 Z}+5 \\
& =1-3+3+5 \\
& =6
\end{aligned}
$$

7. $\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)$

$$
\begin{aligned}
& =x^{6}-x^{4}+x^{2}+x^{4}-x^{2}+1 \\
& =x^{6}+1
\end{aligned}
$$

8. $(x+1)\left(x^{2}-x+1\right)+(2 x-1)\left(4 x^{2}+2 x+1\right)-(x-1)\left(x^{2}+x+1\right)$

$$
=x^{3}+13+(2 x)^{3}-(1)^{3}-\left(x^{3}-3\right) \quad\left[(a+b)\left(a^{2}-a b+b\right)=a^{3}+b^{3}\right]
$$

$$
=x^{3}+1+8 x^{3}-1-x^{3}+1
$$

$$
=8 x^{3}+1
$$

9. (i) $a^{3}+27$

$$
\begin{aligned}
& =a^{3}+(3)^{3} \\
& =(a+3)\left(a^{2}-3 a+9\right)
\end{aligned}
$$

$$
\left[\left(a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right]\right.
$$

(ii) $8 a^{3}+12 a^{2}+6 a+2$

$$
\begin{aligned}
& =8 a^{3}+12 a^{2}+6 a+1+1 \\
& =(2 a+1)^{3}+1
\end{aligned}
$$

$$
\left[a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right]
$$

$$
\begin{aligned}
& =(2 a+1+1)\left\{(2 a+1)^{2}-(2 a+1)(1)+2\right\} \\
& =(2 a+2)\left(4 a^{2}+4 a+1-2 a-1+1\right) \\
& =2(a+1)\left(4 a^{2}+2 a+1\right)
\end{aligned}
$$

(iii) $a^{3}-3 a^{2} b+3 a b^{2}-b^{3}+c^{3}$
$=(a-b)^{3}+c^{3}$
$=(a-b+c)\left\{(a-b)^{2}-(a-b)(c)+c^{2}\right\}$
$=(a-b+c)\left(a^{2}-2 a b+b^{2}-a c+b c+c^{2}\right)$
$=(a-b+c)\left(a^{2}+b^{2}+c^{2}-2 a b+b c-a c\right)$
(iv) $x^{2}-7 x+10$
$=x^{2}-(5+2) x+10$
$=x^{2}-5 x-2 x+10$
$=x(x-5)-2(x-5)$
$=(x-5)(x-2)$
(v) $a^{2}+a b-6 b^{2}$
$=a^{2}-(3-2) a b-6 b^{2}$
$=a^{2}-3 a b+2 a b-6 b^{2}$
$=a(a-3 b)+2 b(a-3 b)$
$=(a-3 b)(a-2 b)$
10. (i) $\frac{x-6}{x-8}+\frac{x-2}{x-4}=\frac{x-5}{x-7}+\frac{x-3}{x-5}$

$$
\frac{(x-6)(x-4)+(x-2)(x-8)}{(x-8)(x-4)}=\frac{(x-5)(x-5)+(x-3)(x-7)}{(x-7)(x-5)}
$$

$\frac{x^{2}-10 x+24+x^{2}-10 x+16}{x^{2}-12 x+32}=\frac{x^{2}-10 x+25+x^{2}-10 x+21}{x^{2}-12 x+35}$
$\left(2 x^{2}-20 x+40\right)\left(x^{2}-12 x+35\right)=\left(2 x^{2}-20 x+46\right)\left(x^{2}-12 x+32\right)$
$2 x^{4}-24 x^{3}+70 x^{2}-20 x^{3}+240 x^{2}-700 x+40 x^{2}-480 x+1400$
$=2 x^{4}-24 x^{3}+64 x^{2}-20 x^{3}+240 x^{2}-640 x+46 x^{2}-552 x+1472$
$110 x^{2}-1180 x+1400=110 x^{2}-1192 x+1472$
$1192 x-1180 x=1472-1400$
$12 x=72$
$x=\frac{72}{12}$
$x=6$
(ii) $\frac{a}{x+a}+\frac{b}{x+a}=2$
$a(x+b)+b(x+a)=2(x+a)(x+6)$
$a x+a b+b x+a b=2\left(x^{2}+b x+a x+a b\right)$
$a x+2 a b+b x=2 x^{2}+2 b x+2 a x+2 a b$
$2 x^{2}+2 b x-b x+2 a x-a x+2 a b-2 a b=0$
$2 x^{2}+b x+a x=0$
$x(2 x+b+a)=0$
$2 x+b+a=0$
$2 x=-(a+b)$
$x=-\frac{(a+b)}{2}$
(iii)
$\frac{1}{(x-3)(x-4)}=\frac{1}{(x-5)(x-6)}$
$(x-5)(x-6)=(x-3)(x-4)$
$x^{2}-11 x+30=x^{2}-7 x+12$
$11 x-7 x=30-12$

$$
\begin{aligned}
4 x & =18 \\
x & =\frac{18}{4} \\
x & =\frac{9}{2}
\end{aligned}
$$

11. (i) $2 x^{4}-5 x^{2}-3$
$=2 x^{4}-(6-1) x^{2}-3$
$=2 x^{4}+1 x^{2}-6 x^{2}-3$
$=x^{2}\left(2 x^{2}+1\right)-3\left(2 x^{2}+1\right)$
$=\left(x^{2}-3\right)\left(2 x^{2}+1\right)$
(ii) $a^{2}-8 a-20$
$=a^{2}-(10-2) a-20$
$=a^{2}-10 a+2 a-20$
$=a(a-10)+2(a-10)$
$=(a-10)(a+2)$
(iii) $21 a^{2}-58 a+21$
$=21 a^{2}-(49+9) a+21$
$=21 a^{2}-49 a-9 a+21$
$=7 a(3 a-7)-3(3 a-7)$
$=(7 a-3)(3 a-7)$
12. (i)

$$
\begin{aligned}
& \frac{x^{3}-y^{3}}{x^{2}-x y+y^{2}} \\
& =\frac{(x-y)\left(x^{2}+x y+y^{2}\right)}{x^{2}+x y+y^{2}}=x-y \\
& {\left[a^{3}-b^{3}=(a-b)\left(a^{2}-a b+b^{2}\right)\right.}
\end{aligned}
$$

(ii) $\frac{x^{2}+2 x-8}{x^{3}+x^{2}-12 x}$

$$
\begin{aligned}
& =\frac{x^{2}+4 x-2 x-8}{x\left(x^{2}+x-12\right)}=\frac{x(x+4)-2(x+4)}{x\left\{x^{2}+4 x-3 x-12\right\}} \\
& =\frac{(x-2)(x+4)}{x\{x(x+4)-3(x+4)\}}=\frac{(x-2)(x+4)}{x(x+4)(x-3)} \\
& =\frac{x-2}{x(x-3)}
\end{aligned}
$$

(iii) $\frac{x^{2}-2}{6 x y} \times \frac{18 y^{3}}{5 x^{4}-10 x^{2}}$

$$
\begin{aligned}
& =\frac{x^{2}-2}{x y} \times \frac{3 y \times y \times y}{5 x^{2}\left(x^{2}-2\right)} \\
& =\frac{3 y^{2}}{5 x^{3}}
\end{aligned}
$$

(iv) $\frac{8 x^{3}-4 y^{2}}{2 a^{2}-3 a+1}$

$$
=\frac{4\left(2 x^{3}-y^{2}\right)}{2 a^{2}-2 a-a+1}
$$

$$
=\frac{4\left(2 x^{3}-y^{2}\right)}{2 a(a-1)-1(a-1)}
$$

$$
=\frac{4\left(2 x^{3}-y^{2}\right)}{(2 a-1)(a-1)}
$$

(can not be reduced further)
(v) $\frac{a^{2}+4 a}{a^{2}-9 a} \div \frac{a^{2}+2 a-8}{x^{2}-x y}$

$$
\begin{aligned}
& =\frac{a(a+4)}{a(a-9)} \times \frac{x(x-y)}{(a+4)(a-4)} \\
& =\frac{x(x-y)}{(a-9)(a-2)}
\end{aligned}
$$

13. Let x be the required number, then

$$
\begin{aligned}
2 x-3.5 & =x+7.5 \\
2 x-x & =7.5+3.5 \\
x & =11.0
\end{aligned}
$$

14. Let x be the age of Arshad, then

Sajid's age $=x+10$
Sohail's age $=x-3$
Sajid's age + Sohail's age $=4 \times$ Arshad's age +2

$$
\begin{aligned}
x+10+x-3 & =4 x+2 \\
4 x-2 x & =7-2 \\
x & =5
\end{aligned}
$$

Arshad's age $=5$ years
Sajid's age $=5+10=15$ years
Sohail's age $=5-3=2$ years
15. Let x° be the smallest angle,

Largest angle $=2 x^{\circ}$
3rd angle $=x^{\circ}+8^{\circ}$
Since the sum of the angles of a triangle is 180°,

$$
\begin{aligned}
\therefore x+2 x+x+8 & =180^{\circ} \\
4 x & =180-8 \\
x & =\frac{172}{4} \\
x & =43^{\circ}
\end{aligned}
$$

Largest angle $=2 x=2(43)=86^{\circ}$
3rd angle $=x+8=43+8=51^{\circ}$
16. Let x be the denominator
$\frac{x-7}{x}=\frac{x-7+2}{x+9}$
$\frac{x-7}{x}=\frac{x-5}{x+9}$

$$
\begin{aligned}
(x-7)(x+9) & =(x-5) \\
x^{2}+2 x-63 & =x^{2}-5 x \\
2 x+5 x & =63 \\
7 x & =63 \\
x & =\frac{63}{7} \\
x & =9
\end{aligned}
$$

\therefore The required fraction is $=\frac{x-7}{x}$

$$
\begin{aligned}
& =\frac{9-7}{9} \\
& =\frac{2}{9}
\end{aligned}
$$

17. (i) $\left(4 a^{4}-5 a^{2}+7\right)\left(a^{2}-3\right)$

$$
\begin{aligned}
& =4 a^{6}-12 a^{4}-5 a^{4}+15 a^{2}+7 a^{2}-21 \\
& =4 a^{6}-17 a^{4}+22 a^{2}-21
\end{aligned}
$$

(ii) $(5 x+4)\left(x^{2}-3 x+7\right)$

$$
\begin{aligned}
& =5 x^{3}-15 x^{2}+35 x+4 x^{2}-12 x+28 \\
& =5 x^{3}-11 x^{2}+23 x+28
\end{aligned}
$$

(iii) $\left(9 x^{5}-3 x^{4}+2 x^{3}-1\right)(3 x-7)$

$$
\begin{aligned}
& =27 x^{6}-63 x^{5}-9 x^{5}+21 x^{4}+6 x^{4}-14 x^{3}- \\
& 3 x+7 \\
& =27 x^{6}-72 x^{5}+27 x^{4}-14 x^{3}-3 x+7
\end{aligned}
$$

9 Linear Equations

Exercise 9A

1. (i) gradient $=\frac{\text { rise }}{\text { run }}$

As we move from left to right the rise is from -12 to -4 , i.e 8 units.
Similarly the run is from -1 to 1 , i.e 2 units
\therefore gradient $=\frac{8}{2}=4$

Helpful Hint

Since the line is going upwards if we move from left to right, the gradient is positive.

The line intersects $y-$ axis at -8 , there fore, y - intercept $=-8$
(ii) As we move from left to right the rise is from 10 to 6 i.e. -4 units and run is -18 to -9 , i.e. 9 units
Therefore,

$$
\text { gradient }=\frac{\text { rise }}{\text { run }}=-\frac{4}{9}
$$

Helpful Hint

If we move from left to right, the line goes downward, and the gradient will be i negative.
y - intercept $=2$
(iii) gradient $=\frac{15}{24}=\frac{5}{8}$
$y-$ intercept $=5$
(iv) gradient $=\frac{3}{3}=1$
y - intercept $=0$
(v) gradient $=\frac{12}{5}$
y - intercept $=16$
2. (i) To write equation of a line, we need to find its gradient and y-intercept.

Helpful Hint

/ The general form of equation of a line is $y=m x+c$, where m is the gradient and c
'is the y-intercept of the line.
In this graph gradient, $m=\frac{4}{2}=2$
and y-intercept, $c=-3$
So, the equation is

$$
y=2 x-3
$$

(ii) $m=-\frac{5}{4}$

Helpful Hint

! Theline is going downwards as we move from left to right so the gradient is inegative.
y-intercept, $c=-2$
The equation is

$$
y=-\frac{5}{4} \quad x-2
$$

(iii) $m=\frac{7}{5}, c=0$

The equation is
$y=\frac{7}{5} x$
(iv) $m=-\frac{7}{4}, c=3$

The equation is
$y=-\frac{7}{4} x+3$
(v) $m=\frac{3}{5}, c=0$

The equation is
$y=\frac{3}{5} x$

Exercise 9B

1. (i) $x-2>4$
[add 2 to both the sides]
$x>4+2$
$x>6$

Helpful Hint

Use open circle for > and <
(ii) $6 x<30$
[divide both the sides by 6]
$x<\frac{30}{6}$
$x<5$

(iii) $6 x 9 \geq 11$
[subtract 9 from both the sides]
$x \geq 11$ - 9
$x \geq 2$

Helpful Hint

Use close circle for \leq and \geq
(iv) $\frac{x}{3} \leq 7$
multiply both sides by 3
$x \leq 7 \times 3$
$x \leq 21$

(v) $\frac{x}{2} \geq 3$
[multiply both sides by 2]
$x \geq 3 \times 2$
$x \geq 6$

(vi) $3<-5 n+2 n$
$3<-3 n$
$-3 n>3$
[divide both sides by - 3]
$n<-1$
Helpful Hint
Change/flip the sign when multiplying
with any negative number

(vii) $-p-4 p>-10$

$$
-5 p>-10
$$

$p<2$

(viii) $9 \geq-2 m+2-3$
$9 \geq-2 m-1$
$9+1 \geq-2 m$
$10 \geq m$
$-5 \leq m$
$m \geq-5$

(ix) $-3-6(4 x+6)>-111$

Exercise 9C

1. (i) coefficient, constant
(ii) $5 x+2 y$
(iii) 2
(iv) elimination, substitution
(v) $x=9, y=4$
2. (i) True
(ii) True
(iii) False

Reason:

Both equation will have a solution for particular values of x and y
For example, if $x=1$ and $y=2$

$$
\begin{aligned}
& x+y \\
& =1+2 \\
& =3 \neq 0
\end{aligned}
$$

(iv) True
(v) False Reason: LHS RHS

$$
x-3 y=9
$$

by substituting the values, $x=4$ and $y=3$, we have

$$
\text { LHS } \begin{aligned}
& 4-z\left(\frac{5}{z}\right) \\
& =4-5=-1
\end{aligned}
$$

LHS is not equal to RHS
3. (i) $7 x+3 y=25$ \qquad
$-2 x+y=4$ \qquad
Eliminate y from the equations.
$(-2 x+y=4) \times 3 \quad$ [multiply equation (ii) by 3 to make the coefficients of y same]

We have

$$
\begin{aligned}
& 7 x+3 y=25 \text { (i) (i)[subtract eq } \\
&-6 x+3 y=12 \\
&+\quad-\quad- \text { (ii) (ii) from (i)] } \\
& \hline 13 x=13 \\
& x=\frac{13}{13}=1
\end{aligned}
$$

Now, substitute this value of x in any one of the given equations.
Equation
(ii)

$$
\begin{array}{r}
-2 x+y=4 \\
-2(1)+y=4 \\
-2+y=4 \\
y=4+2 \\
y=6
\end{array}
$$

$\therefore x=1, y=6$
(ii) $5 x-y=7$ \qquad (i)

$$
\begin{equation*}
2 x+y=7 \tag{ii}
\end{equation*}
$$

\qquad
The coefficients of y are already same.

$$
\begin{aligned}
& \text { Helpful Hint } \\
& \text { signs of the coefficie } \\
& \text { bles are different, ad } \\
& \text { Add eq (i) and (ii) } \\
& \begin{array}{c}
5 x-y=7 \\
+\frac{2 x+y=7}{7 x=14} \\
x=\frac{14}{7} \\
x=2
\end{array}
\end{aligned}
$$

'If the signs of the coefficients of eliminating i ! variables are different, add the equation.

Substitute $y=2$ eq (i)
$5 x-y=7$
5(2) $-y=7$
$10-y=7$
$-y=7-10$
$-y=-3$

$$
y=+3
$$

$\therefore x=2, y=3$
(iii) $2 x-y=2$ \qquad

$$
\begin{equation*}
\frac{5 x+y=-9}{7 x=-7} \tag{i}
\end{equation*}
$$

Add equations (i) and (ii)

$$
x=\frac{-7}{7}=-1
$$

Substitute $x=1$ in eq (i)

$$
\begin{aligned}
& 2 x-y=2 \\
& 2(-1)-y=2 \\
& -2-y=2 \\
& -y=2+2 \\
& -y=4 \\
& \quad y=-4 \\
& \therefore x=-1, y=-4
\end{aligned}
$$

$$
\text { (iv) } \begin{align*}
& 4 x+4 y=-4 \\
& x+7 y=-19 \\
& \begin{array}{l}
\text { (i) } \\
x+7 y=-19) \times 4 \\
4 x+28 y=-76
\end{array} \text { (ii) } \tag{ii}
\end{align*}
$$

Now subtract eq (ii) from eq (i)

$$
\begin{aligned}
4 x+4 y & =-4 \\
4 x+28 y & =-76 \\
-\quad+\quad & + \\
\hline-24 y & =72 \\
y & =-\frac{72}{24} \\
y & =-3
\end{aligned}
$$

Substitute in eq (i)

$$
\begin{aligned}
4 x+4(-3) & =-3 \\
4 x-12 & =-4 \\
4 x & =8 \\
x & =2
\end{aligned}
$$

$\therefore x=2, y=-3$
(v) Add both the equations to eliminate y

$$
\begin{gather*}
3 x-y=7 \tag{i}\\
+\frac{\frac{1}{2} x+y=7}{\left(3+\frac{1}{2}\right) x=14} \tag{ii}
\end{gather*}
$$

$$
\begin{aligned}
\frac{6+1}{2} x & =14 \\
\frac{7}{2} x & =14 \\
7 x & =14 \times 2=28 \\
x & =\frac{28}{7}=4
\end{aligned}
$$

Substitute $x=4$ in eq (i)

$$
\begin{aligned}
3(4)-y & =7 \\
12-y & =7 \\
-y & =7-12 \\
-y & =-5 \\
y & =5
\end{aligned}
$$

$\therefore x=4, y=5$
(vi) $4 a-3 b=10$

$$
\begin{equation*}
2 a+b=10 \tag{i}
\end{equation*}
$$

\qquad

Multiply eq (ii) by 3 to make coefficients of b same.
$(2 a+b=10) \times 3$
$6 a+3 b=30$
Add both the equations (i) and (ii)

$$
\begin{aligned}
& 4 a-3 b=10 \\
& +\frac{6 a+3 b=30}{10 a}=40 \\
& a=\frac{40}{10} \\
& a=4
\end{aligned}
$$

Substitute $a=4$ in eq (i)

$$
\begin{aligned}
4(4)-3 b & =10 \\
16-3 b & =10 \\
-3 b & =10-16=-6 \\
b & =\frac{-6}{-3} \\
b & =2
\end{aligned}
$$

$\therefore a=4, b=2$
(vii) $a-5 b=10$
$5 a-3 b=17$
Multiply eq (i) by 5
$(a-5 b=10) \times 5$
Subtract eq (ii) from eq (i)
$5 a-25 b=50$
$5 a-3 b=17$
$\frac{-\quad+}{-22 b=33}$
$b=-\frac{33}{22}=-\frac{3}{2}$
Substitute $b=\frac{3}{2}$ in eq (i)

$$
\begin{aligned}
a-5\left(-\frac{3}{2}\right) & =10 \\
a+\frac{15}{2} & =10 \\
a=10-\frac{15}{2} & =\frac{20-15}{2} \\
2 a & =5 \\
a & =\frac{5}{2} \\
\therefore a=\frac{5}{2}, b & =\frac{-3}{2}
\end{aligned}
$$

(viii) $a+1 \frac{1}{2} \quad b=8 \frac{1}{2}$

$$
\begin{align*}
a+\frac{3}{2} b & =\frac{17}{2} \tag{i}\\
2 a-b & =1 \tag{ii}
\end{align*}
$$

Multiply eq (i) by 2

$$
\begin{gathered}
\left(a+\frac{3}{2} b=\frac{17}{2}\right) \times 2 \\
2 a+3 b=17 \\
2 a-b=1 \\
-\quad+\quad- \\
\hline 4 b=16 \\
b=\frac{16}{4} \\
b=4
\end{gathered}
$$

Substitute $b=4$ in eq (ii)

$$
\begin{aligned}
& 2 a-b=1 \\
& 2 a-4=1
\end{aligned}
$$

$$
2 a=1+4=5
$$

$$
a=\frac{5}{2}
$$

$$
\therefore a=\frac{5}{2}, b=4
$$

(ix) $3 x-5=y$
$3 x-y=5$
$x=y-1 \frac{1}{3}$
$x-y=-\frac{4}{3}$ \qquad (ii) Subtract eq (ii) from (i)
$3 x-y=5$
$x-y=-\frac{4}{3}$
$\frac{-\quad+=+}{2 x=5+\frac{4}{3}}$
$2 x=\frac{15+4}{3}$
$2 x=\frac{19}{3}$
$x=\frac{19}{6} \times \frac{1}{2}$
$x=\frac{19}{6}$
Substitute $\frac{19}{16}$ in eq (i)

$$
3 x-y=5
$$

$$
3\left(\frac{19}{6}\right)-y=5
$$

$$
\begin{gathered}
\frac{19}{2}-y=5 \\
y=\frac{19}{2}-5 \\
y=\frac{19-10}{2} \\
y=\frac{9}{2} \\
\therefore x=\frac{19}{6}, y=\frac{9}{2}
\end{gathered}
$$

$$
\begin{equation*}
\text { (x) } \quad x+y=4 \tag{i}
\end{equation*}
$$

$3 x-2 y=7.5$
Multiply eq (i) by (ii)
$(x+y=4) \times 2$
Add both the equation

$$
\begin{gather*}
2 x+2 y=8 \tag{i}\\
3 x-2 y=7.5 \tag{ii}\\
\hline 5 x=15.5 \\
x=3.1
\end{gather*}
$$

Substitute $x=3.1$ in eq (i)
$3.1+y=4$
$y=4-3.1$
$y=0.9$
$x-3.1, y=0.09$
4. (i) $5 x-2 y=8$
$3 x-2 y=4$
(i)
(ii)

Helpful Hint
Make 'y' the subject of the equation.
From eq (i)

$$
\begin{aligned}
-2 y & =8-5 x \\
y & =-\frac{(8-5 x)}{2} \\
y & =-\frac{5 x-8}{2}
\end{aligned}
$$

Substitute in eq (ii)

$$
\begin{aligned}
3 x-\chi\left(\frac{5 x-8}{\not 2}\right) & =4 \\
3 x-5 x+8 & =4 \\
-2 x & =4-8 \\
-2 x & =-4 \\
x & =2
\end{aligned}
$$

Substitute $x=2$ in eq (i)

$$
\begin{gathered}
5(2)-2 y=8 \\
10-2 y=8 \\
-2 y=8-10 \\
-2 y=-2 \\
y=1 \\
\therefore x=2, y=1
\end{gathered}
$$

(ii) $5 b+14 a=31$

$$
\begin{equation*}
2 a-3 b=-29 \tag{i}
\end{equation*}
$$

From eq (ii)

$$
\begin{aligned}
2 a & =-29+3 b \\
a & =\frac{-29+3 b}{2}
\end{aligned}
$$

Substitute in eq (i)

$$
\begin{aligned}
5 b+1^{7} 4\left(\frac{-29+3 b}{2}\right) & =31 \\
5 b-203+21 b & =31 \\
26 b & =31+203 \\
26 b & =234 \\
b & =\frac{234}{26}
\end{aligned}
$$

$$
b=9
$$

Substitute $b=9$ in eq (ii)

$$
\begin{align*}
2 a-3(9) & =-29 \\
2 a-27 & =-29 \\
2 a & =-29+27 \\
2 a & =-2 \\
a & =-1 \\
\therefore a=-1 & , \quad b=9 \tag{i}
\end{align*}
$$

(iii) $2 a-3 b=1.5$

$$
2 a-b=8.5
$$

From eq (ii)

$$
\begin{aligned}
-b & =8.5-2 a \\
b & =2 a-8.5
\end{aligned}
$$

Substitute $a=6$ in eq (i)

$$
\begin{gathered}
2 a-3(2 a-8.5)=1.5 \\
2 a-6 a+25.5=1.5 \\
-4 a=1.5-25.5 \\
-4 a=-24.0
\end{gathered}
$$

$$
\begin{aligned}
& a=\frac{24}{4} \\
& a=6
\end{aligned}
$$

Substitute in eq (ii)

$$
\begin{aligned}
2(6)-b & =85 \\
12-b & =8.5 \\
b & =12-8.5 \\
b & =3.5
\end{aligned}
$$

$\therefore a=6, b=3.5$
(iv) $x-y=3$

- (i)
$5 x+y=33$
From eq (i)
$x=3+y$
Substitute $y=+3$ in eq (ii)
$5(3+y)+y=33$
$15+5 y+y=33$

$$
\begin{aligned}
6 y & =33-15=18 \\
y & =\frac{18}{6}=3
\end{aligned}
$$

Substitute in eq (i)
$x-3=3$

$$
\begin{aligned}
& x=3+3 \\
& x=6
\end{aligned}
$$

$\therefore x=6, y=3$
(v) $2 z+x=15$
$2 z+3 x=9$

From eq (i)
$x=15-2 z$
Substitute in eq (ii)

$$
\begin{aligned}
& 2 z+3(15-2 z)=9 \\
& 2 z+45-6 z=9 \\
&-4 z=9-45=-36 \\
& z=\frac{36}{4}=9
\end{aligned}
$$

Substitute in eq (i)

$$
\begin{aligned}
2(9)+x & =15 \\
18+x & =15 \\
x & =15-18 \\
x & =-3
\end{aligned}
$$

$$
\therefore x=-3 \quad, \quad z=9
$$

(vi) $5 m-7 n=5$
$m-2 n=-2$
From eq (ii)

$$
m=-2+2 n
$$

Substitute in eq (i)

$$
5(-2+2 n)-7 n=5
$$

$$
-10+10 n-7 n=5
$$

$$
3 n=15
$$

$$
n=5
$$

Substitute $n=5$ in eq (ii)

$$
\begin{aligned}
m-2(5) & =-2 \\
m-10 & =-2 \\
m & =-2+10 \\
m & =8 \\
\therefore m=8, n & =5
\end{aligned}
$$

(vii) $m+1.5 n=23$

$$
\begin{equation*}
1.5 m-2 n=-8 \tag{i}
\end{equation*}
$$

From eq (i)

$$
m=23-1.5 n
$$

Substitute in eq (ii)

$$
1.5(23-1.5 n)-2 n=-8
$$

$$
34.5-2.25 n-2 n=-8
$$

$$
4.25 n=42.5
$$

$$
\begin{aligned}
& n=\frac{42.5}{4.25} \\
& n=10
\end{aligned}
$$

Substitute $n=10 \mathrm{in}$ eq (i)

$$
\begin{aligned}
m+1.5(10) & =23 \\
m+15 & =23 \\
m & =23-15=8 \\
\therefore m=8, n & =10
\end{aligned}
$$

(viii) $\frac{5 a}{2}-\frac{13}{3} b=-29$

$$
\begin{equation*}
\frac{4}{3} b-\frac{3}{2} a=6 \tag{ii}
\end{equation*}
$$

From eq (i)

$$
\frac{5}{2} a=-29+\frac{13}{3} b
$$

$$
\begin{aligned}
& a=\frac{2}{5}\left(-29+\frac{13}{3} b\right) \\
& a=-\frac{58}{5}+\frac{26}{15} b
\end{aligned}
$$

Substitute in eq (ii)
$\frac{4}{3} b-\frac{3}{2}\left(-\frac{58}{5}+\frac{26}{15} b\right)=+6$
$\frac{4}{3} b+\frac{174}{10}-\frac{26}{10} b=6$
$\left(\frac{4}{3}-\frac{26}{10}\right) b=6-\frac{174}{10}$
$\frac{40-78}{30} b=\frac{60-174}{10}$
$-\frac{38}{30} b=-\frac{114}{10}$

$$
\begin{aligned}
& b=\frac{114}{10} \times \frac{30}{38} \\
& b=9
\end{aligned}
$$

Substitute $b=9$ in eq (i)
$\frac{5}{2} a-\frac{13}{3} \times 9=-29$
$\frac{5}{2} a=-29+39=10$

$$
a=10 \times \frac{2}{5}
$$

$$
a=4
$$

$$
\begin{equation*}
\therefore a=4 \quad, \quad b=9 \tag{i}
\end{equation*}
$$

(ix)
$c-\frac{1}{5} d=9$
$c-2 d=-9$
From eq (i)
$c=9+\frac{1}{5} \mathrm{~d}$
Substitute in eq (ii)

$$
\begin{gathered}
9+\frac{1}{5} d-2 d=-9 \\
\frac{d-10 d}{5}=-9-9 \\
-\frac{9 d}{5}=-18 \\
9 d=5 \times 18 \\
d=\frac{5 \times 18}{9} \\
d=10
\end{gathered}
$$

Substitute $d=10$ in eq (i)
$c-\frac{1}{5} \times 10=9$

$$
c=9+2
$$

$$
c=11
$$

$\therefore c=11, d=10$.
(x) $x-y=7$
$2 y+3 x=11$
(i)

From eq (i)
$x=7+y$
Substitute in eq (ii)

$$
\begin{aligned}
2 y+3(7+y) & =11 \\
2 y+21+3 y & =11 \\
5 y & =11-21 \\
5 y & =-10 \\
y & =-2
\end{aligned}
$$

Substitute in eq (i)

$$
\begin{aligned}
x-(-2) & =7 \\
x+2 & =7 \\
x & =7-2 \\
x & =5 \\
\therefore x & =5 \quad, y=-2
\end{aligned}
$$

5. (i) $x+y=3$ \qquad eq 1
$4 x-y=2$ \qquad eq 2
Make table of values for equation 1 by substituting various values of x to find corresponding values of y.

$$
\begin{aligned}
& x+y=3 \\
& y=3-x
\end{aligned}
$$

-Helpful Hint other terms at right hand side to find the 'value of y.

x	-2	-1	0	1	2
y	5	4	3	2	1

Now plot these pints on a coordinate plane (graph sheet).
Join all points to form a straight line and name it as equation 1 on the graph.
Now, follow same steps for equation 2.

$$
\begin{aligned}
& 4 x-y=2 \\
& y=4 x-2 \\
& \begin{array}{|c|c|c|c|c|c|}
\hline x & -2 & -1 & 0 & 1 & 2 \\
\hline y & -10 & -6 & -2 & 2 & 6 \\
\hline
\end{array}
\end{aligned}
$$

Plot the points and draw line for equation. Label it equation 2

Encircle the point of intersection of the two lines and note down the values of x and y. This point of intersection is the solution of the two equations i.e.
$x=1$ and $y=2$
or $(1,2)$ is the solution.
(ii) $x+y=3$ \qquad eq 1
$2 x-2 y=10$ \qquad eq 2
Make table of values for equation 1 .
$x+y=3$

$$
y=3-x
$$

x	-2	-1	0	1	2
y	5	4	3	2	1

Make table of values for equation 2

$$
\begin{aligned}
2 x-2 y & =10 \\
x-y & =5 \\
y & =x-5
\end{aligned}
$$

x	2	3	4	5	6	7
y	-3	-2	-1	0	1	2

Draw graphs for both the equations on same plane

Solution: $x=4, y=-1$
(iii) $5 x-y=6$ eq 1
$2 x+y=8 \quad$ eq 2
Take equation 1
$5 x-y=6$
$y=5 x-6$

x	0	1	2	3	4
y	-6	-1	4	9	74

Take equation 2

$$
\begin{aligned}
2 x+y & =8 \\
y & =8-2 x
\end{aligned}
$$

x	0	1	2	3	4
y	8	6	4	2	0

Draw the graphs for equations 1 and 2 on the same plane.

Helpful Hint

Choose scale as $1 \mathrm{~cm}=5$ units on both the axes.

Solution $x=2, y=4$
(iv) $3 x-y=2$
eq 1
$9 x-3 y=6$ \qquad eq 2
For equation 1
$3 x-y=2$

$$
y=3 x-2
$$

x	-1	0	1	2	3
y	-5	-2	1	4	7

For equation 2
$9 x-3 y=6$
$3 y=9 x-6$
$y=\frac{9 x-6}{3}=3 x-2$

x	-1	0	1	2	3
y	-5	-2	1	4	7

You can notice that the graph is same for both the equations. The lines coincide each other. Hence, the two equations have infinite number of solutions.
(v) $y-2 x=3$ eq 1
$2 x-y=5$ eq 2
Make table of values for equation 1.
$y-2 x=3$
$y=2 x+3$

$x-2$	-1	0	1	2	3
$y-1$	1	3	5	7	9

For equation 2

$2 x-y=5$
$y=2 x-5$

$x-2$	-1	0	1	2	3
$y-9$	-7	-5	-3	-1	1

Since, the two lines are parallel, they do not intersect each other at any point, hence, the two equations have no solution.
(vi) $x+y=1$ eq 1
$3 x+y=15 \quad$ eq 2
Equation 1:
$x+y=1$
$y=1-x$

x	-2	-1	0	1	2
y	3	2	1	0	-1

For Equation 2: $\quad 3 x+3 y=15$

$$
\begin{aligned}
& x+y=5 \\
& y=5-x
\end{aligned}
$$

x	-2	-1	0	1	2
y	7	6	5	4	3

Since, the two lines are parallel, they have no solution.
6. Let x and y be the numbers of days Ahmed and Manu each worked for, respectively. $200 x+250 y=3900$ [divide both sides by 10]

$$
\begin{equation*}
20 x+25 y=390 \tag{i}
\end{equation*}
$$

$$
250 y=200 x+1100
$$

$250 y-200 y=1100$ [divide both side by 10]
$-20 x+25 y=110$
Add eq (i) and eq (ii)

$$
\begin{aligned}
20 x+25 y & =390 \\
-20 x+25 y & =110 \\
50 y & =500 \\
y & =\frac{500}{50}=10
\end{aligned}
$$

Substitute $y=10$ in eq (i)
$20 x+25(10)=390$
$20 x+250=390$
$20 x=390-250=140$
$x=\frac{140}{20}=7$
\therefore Ahmed worked for 7 days and Many worked for 10 days.

```
        Helpful Hint
Total payment \(=\) number of days \(\times\) payment 'per day
```

Ahmed's payment $=200 \times 7=$ Rs 1400
Manu's payment $=250 \times 10=$ Rs 2500
$-20 x+25 y=110$
Add eq (i) and eq (ii)

$$
\begin{aligned}
20 x+25 y & =390 \\
-20 x+25 y & =110 \\
50 y & =500 \\
y & =\frac{500}{50}=1
\end{aligned}
$$

7. Let x and y be the amounts in Anum's purse and money box, respectively.
$2 x+y=1700$
$3 x+y=2200$
$3 x+y=2200$
Subtract eq (i) from eq (ii)
$3 x+y=2200$
$2 x+y=1700$

| $-\quad-\quad-$ |
| ---: | :--- |
| $x=500$ |

Substitute in eq (i)

$$
\begin{aligned}
2(500)+y & =1700 \\
y & =1700-1000 \\
y & =700
\end{aligned}
$$

\therefore Anum has Rs 700 in her money box
8. Let x and y be the ages of Rehana and Sonia respectively.
$x+y=20$
$x-y=8$
add both the equations
$2 x=28$
$x=14$
Substitute in eq (i)
$14+y=20$

$$
y=20-14=6
$$

\therefore Rehana is 14 years old and Sonia is 6 years old.
9. Let x and y be the cost of one cup of cappuccino and one cup of cold coffee, respectively.

$$
\begin{align*}
4 x+4 y & =1400 \tag{i}\\
4 x & =3 y \\
4 x & -3 y=0 \\
7 y & =1400 \quad \text { Subtract eq (ii) from eq (i) } \\
y & =200
\end{align*}
$$

Substitute in eq (ii)

$$
\begin{aligned}
4 x-3(200) & =0 \\
4 x & =600 \\
x & =\frac{600}{4} \\
x & =150
\end{aligned}
$$

$\therefore 1$ cup of cappuccino costs Rs 150 and 1 cup of cold coffee costs Rs 200

5 cups of cappuccino cost $5 \times 150=$ Rs 750
5 glasses of cold coffee cost

$$
=5 \times 200=\text { Rs } 1000
$$

Hence, Abbas will pay

$$
\text { Rs } 1000 \text { + Rs } 750 \text { = Rs } 1750
$$

Multiple Choice Questions 9

1. C
2. C
3. C
4. C
5. D

11. Mensuration

Exercise 10A

1. (i) diameter
(ii) circumference
(iii) segment
(iv) interior
(v) chord
2. (i) True
(ii) False

A diameter of a circle is a line segment passing through the centre of the circle and its end points lie on the circle. There can be many lines passing through the centre and its end points touching the boundary of the circle.
(iii) False

A radius is a straight line from the centre to the circumference of a circle, while the chord is straight line whose end points lie on the circle.
(iv) True
(v) True
3.

Steps of construction:

Step 1: Using a compass, draw a circle of radius 2.8 cm .

Step 2: O is the centre of the circle.
Step 3: Take points S and T on the boundary of the circle. Join S and T. ST is a
chord.
Step 4: Take points Q and R on the boundary of the circle. Join Q and $R Q R$ is another chord.
$\therefore \quad \overline{\mathrm{ST}}$ and $\overline{\mathrm{QR}}$ are two chords not passing through the centre.
4.

Steps of construction:

Step 1: Draw a circle of diameter 8 cm or radius 4 cm .
Step 2: Draw the diameter $\overline{\mathrm{AB}}$ of the circle.
Step 3: Take another point P on the circle
Step 4: Join A to P and B to P.
Step 5: Measure $\angle A P B m$
$\angle \mathrm{APB}=90^{\circ}$
5.

Steps of construction:

Step 1: Draw a circle with radius 3.5 cm .
Step 2: Draw the chord $\overline{\mathrm{PQ}}$ of length 2.5 cm touching the circle at P and Q.

Step 3: Shade the minor segment PQ. $P Q$ is the required segment.
6.

A (ii)

(ii)

Steps of construction:

Step 1: Draw a circle of suitable radius with centre 0 .
Step 2: Take a point A on the circle and join A and O .

Step 3: Construct an angle of 60° on OA , $\angle A O B=60^{\circ}$; area between $\overline{A O}$ and $\overline{O B}$ is the sector of the circle.
Repeat the same steps for (ii) and (iii)
7. Angle formed by minor arc, $x=120^{\circ}$ radius of the circle, $r=6 \mathrm{~cm}$

$$
\begin{aligned}
\text { arc length } & =\frac{x}{360} \times 2 \pi x \\
& =\frac{120}{360} \times 2 \times 3.14 \times 6 \\
& =4 \times 3.14 \\
& =12.56 \mathrm{~cm}
\end{aligned}
$$

8. Diameters $=36 \mathrm{~cm}$

$$
\begin{aligned}
\text { radius } \quad=r & =\frac{d}{2}=\frac{36}{2} \mathrm{~cm} \\
r & =18 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& x=60^{\circ} \\
& \text { arc length }=\frac{x}{360} \times 2 \pi r
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{60}{360} \times 2 \times 3.14 \times 18 \\
& =6 \times 3.14 \\
& =18.84 \mathrm{~cm}
\end{aligned}
$$

9. Angle formed by minor arc:

$$
\begin{aligned}
& x=360-110^{\circ} \\
& x=250^{\circ} \\
& \begin{aligned}
& \text { arc length }=\frac{250}{360} \times 2 x r \\
&=\frac{250}{360} \times 2 \times 3.14 \times 18 \\
&=25 \times 3.14 \\
&=78.5 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

Helpful Hint

'Sum of angles of all minor and major sectors) is equal to 360°. The complete rotation in a i circle is 360° degrees.
10. (a) $x=90^{\circ}$

$$
r=16 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Sector area } & =\frac{x}{360} \times \pi r^{2} \\
& =\frac{90}{360} \times 3.14 \times 16^{2} \\
& =64 \times 3.14 \\
& =200.96 \mathrm{~cm}^{2}
\end{aligned}
$$

b. $x=135^{\circ}$

$$
r=8 \mathrm{~m}
$$

$$
\begin{aligned}
\text { Sector area } & =\frac{x}{360} \times \pi r^{2} \\
& =\frac{135}{360} \times 3.14 \times 8^{2} \\
& =24 \times 3.14 \\
& =75.36 \mathrm{~m}^{2}
\end{aligned}
$$

c. $x=40^{\circ}$

$$
r=18 \mathrm{~m}
$$

$$
\begin{aligned}
\text { Sector area } & =\frac{x}{360} \times \pi r^{2} \\
& =\frac{40}{360} \times 3.14 \times 18^{2} \\
& =36 \times 3.14 \\
& =113.04 \mathrm{~m}^{2}
\end{aligned}
$$

Exercise 10B

1. (i) In the given $\triangle A B C$,
$a=3 \mathrm{~cm}$
$b=5 \mathrm{~cm}$
$c=$?

Hypotenuse is always the side opposite to the right angle of a triangle.

According to Pythagoras' theorem:
$c^{2}=a^{2}+b^{2}$
$c^{2}=3^{2}+5^{2}$
$c^{2}=9+25$
$c^{2}=34$
$\sqrt{\mathrm{c}^{2}}=\sqrt{34}$
$c=5.8 \mathrm{~cm}$
(ii) In the given $\triangle A B C$,
$a=$?
$b=6 \mathrm{~cm}$
$c=10 \mathrm{~cm}$
$10^{2}=a^{2}+6^{2}$
$100=a^{2}+36$
$100-36=a^{2}$
$a^{2}=64$
$\sqrt{\mathrm{a}^{2}}=\sqrt{64}$
$a=8 \mathrm{~cm}$
(iii) In the given $\triangle A B C$,
$a=2 \mathrm{~cm}$
$b=6 \mathrm{~cm}$
$c=$?
$c^{2}=a^{2}+b^{2}$
$c^{2}=2^{2}+b^{2}$
$c^{2}=4+36$
$c^{2}=40$
$\sqrt{\mathrm{c}^{2}}=\sqrt{40}$
$c=6.32 \mathrm{~cm}$
2.

Helpful Hint
' Draw the figure to understand its dimensions.

$a=8$ inches
$b=$?
$c=17$ inches

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& 17^{2}=8^{2}+b^{2} \\
& 289-64=b^{2} \\
& b^{2}=225 \\
& b=15
\end{aligned}
$$

\therefore The length is 15 inches
3. $a=8 \mathrm{~cm}$
$b=6 \mathrm{~cm}$
$c=$?

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =8^{2}+6^{2} \\
c^{2} & =64+36 \\
c^{2} & =100 \\
\sqrt{\mathrm{c}} & =\sqrt{100} \\
c & =10 \mathrm{~cm}
\end{aligned}
$$

4.

Helpful Hint

Hypotenuse is always the longest side of a right-angled triangle.
$c=13 \mathrm{~cm}$
$a=5 \mathrm{~cm}$
$b=12 \mathrm{~cm}$
LHS RHS
$c^{2}=a^{2}+b^{2}$
To verity Pythagoras' theorem, right hand side of the theorem should be equal to its left hand side.
LHS $c^{2}=13^{2}=169$
RHS $a^{2}+b^{2}=5^{2}+12^{2}=25+144=169$
Since LHS = RHS
Pythagoras' theorem is verified.
5.

$$
\begin{aligned}
& a=4 \mathrm{~cm} \\
& b=4 \mathrm{~cm} \\
& c=?
\end{aligned}
$$

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =4^{2}+4^{2} \\
c^{2} & =16+16 \\
c^{2} & =32 \\
c & =\sqrt{32} \\
c & =5.66 \mathrm{~cm}
\end{aligned}
$$

6.

Lets A be the starting point of the truck then C is the find point where the truck stops. The distance between starting point and ending point is represented by hypotenuse.
According to Pythagoras' theorem:

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=100^{2}+75^{2} \\
& c^{2}=10000+5625 \\
& c^{2}=15625 \\
& \sqrt{c^{2}}=\sqrt{15625} \\
& c=125 \mathrm{~km}
\end{aligned}
$$

7.

Shadow 15 m long
$a=$?
$b=15 \mathrm{~m}$
$c=17 \mathrm{~m}$

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
17^{2} & =a^{2}+15^{2} \\
a^{2} & =289-225=64 \\
a & =8 \mathrm{~m}
\end{aligned}
$$

8.

$a=9 \mathrm{~m}$
$b=40 \mathrm{~m}$
$c=$?

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =9^{2}+40^{2} \\
c^{2} & =81+1600 \\
c^{2} & =1681 \\
c & =41 \mathrm{~m}
\end{aligned}
$$

9. $a=8 \mathrm{~m}$
$b=15 \mathrm{~m}$
$c=$?

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =8^{2}+15^{2} \\
c^{2} & =64+225 \\
c^{2} & =289 \\
c & =17 \mathrm{~m}
\end{aligned}
$$

Exercise 10C

1. (i) isosceles
(ii) four
(iii) regular polygon
(iv) $\frac{4}{3} \pi r^{3}$
(v) 2 (two)
2. (i) False
volume of a pyramid $=\frac{1}{3} \times$ base area \times height
(ii) True
(iii) True
(iv) False

Area of the base of cone is πr^{2}
(v) True
3. Volume of a pyramid $=\frac{1}{3} \times$ base area \times height $v=\frac{1}{3} \times 18 \times 18 \times 26$

Helpful Hint

' Since the base of the pyramid is square so I the area of square is calculated.

$$
\mathrm{v}=2808 \mathrm{~m}^{3}
$$

(ii) There are 5 surfaces of the given pyramid. There are four 4 triangles and one square.

Total surface area $=4 \times$ area of triangle + base area

$$
\begin{aligned}
& =4 \times \frac{1}{2} \times 16 \times 6+16 \times 16 \\
& =192+256 \\
& =960 \mathrm{~cm}^{2}
\end{aligned}
$$

4. Volume of pyramid $=12000 \mathrm{~cm}^{3}$
$\frac{1}{3} \times$ base area \times height $=12000$
$\frac{1}{3} \times 20 \times 20 \times h=12000$

$$
\begin{aligned}
& h=\frac{3^{3} 2000 \times 3}{400} \\
& h=90 \mathrm{~cm}
\end{aligned}
$$

The height of the pyramid should be 90 cm to be filled with $12000 \mathrm{~cm}^{3}$ of sand.
5. Volume $=\frac{1}{3} \times$ base area \times height

$$
\begin{aligned}
& =\frac{1}{3} \times 14 \times 14 \times 24 \\
& =1568 \mathrm{~cm}^{3}
\end{aligned}
$$

Total surface area $=4 x$ area of triangle + base area
Helpful Hint

$$
\begin{aligned}
& =4 \times \frac{1}{2} \times 14 \times 25+14 \times 145 \\
& =700+196 \\
& =896 \mathrm{~cm}^{2}
\end{aligned}
$$

6. Volume $=\frac{1}{3} \times$ base area \times height

$$
\begin{aligned}
& =\frac{1}{3} \times 24 \times 24 \times 12 \\
& =2304 \mathrm{~cm}^{3}
\end{aligned}
$$

7. Base area $=36000 \mathrm{~cm}^{2}$

Volume $=7200 \mathrm{~cm}^{2}$
Volume $=\frac{1}{3} \times$ base area \times height $\frac{1}{3} \times$ base area \times height $=7200 \mathrm{~cm}^{3}$

$$
\begin{aligned}
\frac{1}{33} \times \frac{1200}{3600} \times h & =7200 \\
h & =\frac{7200}{1200} \\
h & =6 \mathrm{~cm}
\end{aligned}
$$

8. Area of base of a cone $=\pi r^{2}=38.50 \mathrm{sq} . \mathrm{cm}$

$$
\begin{aligned}
& \pi r^{2}=38.50 \\
& \frac{22}{7} r^{2}=38.50 \\
& r^{2}=38.50 \times \frac{7}{22}=12.25 \\
& \sqrt{r^{2}}=\sqrt{12.25} \\
& r=3.5 \mathrm{~cm}
\end{aligned}
$$

Given that, height $=3$ times of radius
$\therefore h=3 r=3 \times 3.5=10.5 \mathrm{~cm}$
volume of cone $=\frac{1}{3}$ area of base \times height

$$
\begin{aligned}
& =\frac{1}{3} \times 30.50 \times 10.5 \\
& =134.75 \mathrm{~cm}^{3}
\end{aligned}
$$

9.

Helpful Hint

I Total surface area of a solid cone includes its i base area.
$r=3 \mathrm{~cm}$
$l=5 \mathrm{~cm}$
total surface area = ?
total surface area $=\pi r l+\pi r^{2}$

$$
\begin{aligned}
& =\pi r(l+r) \\
& =\pi \times 3(5+3)=\frac{22}{7} \times 3 \times 8 \\
& =\pi 24=24 \pi \mathrm{~cm}^{2} \\
\text { or } 24 & \times \frac{22}{7}=75.43 \mathrm{~cm}^{2}
\end{aligned}
$$

10. $h=12 \mathrm{~cm}$
$r=5 \mathrm{~cm}$
volume of a cone $=$?

$$
\begin{aligned}
\text { volume } & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \frac{22}{7} \times(5)^{2} \times 12 \\
& =\frac{6600}{21}=314.3 \mathrm{~cm}^{3}
\end{aligned}
$$

11. $h=5 \mathrm{~m}$
$r=12 \mathrm{~m}$
$l=13 \mathrm{~m}$
(i) area of canvas = curved surface area

$$
\begin{aligned}
& =\pi r l \\
& =3.14 \times 12 \times 13 \\
& =489.84 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) volume $=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \times 3.14 \times(12)^{2} \times 5
$$

$$
=753.6 \mathrm{~cm}^{3}
$$

12. Surface area of sphere $=324 \pi$ sq. cm Volume = ?

Helpful Hint

To find out volume of sphere we need to f find out the radius first.

Surface area of sphere $=4 \pi r^{2}$

$$
\begin{aligned}
4 \mathscr{X} r^{2} & =324 \pi \\
r^{2} & =\frac{324}{4}=81 \\
\sqrt{r^{2}} & =\sqrt{81} \\
r & =9 \mathrm{~cm}
\end{aligned}
$$

Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3}(9 \times 9 \times 9) \pi=\frac{4}{3} \times 729 \pi \\
& =972 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of sphere with diameter 1 cm , $r=0.5 \mathrm{~cm}$
volume $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \pi(0.5)^{3} \\
& =0.167 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Helpful Hint

ino. of small spheres $=\frac{\text { volume of big sphere }}{\text { volume of small sphere }}$
no. of small spheres $=\frac{324 \pi}{0.1667 x}$

$$
=5832
$$

13. Surface area of sphere $=616$ sq.cm

$$
\begin{aligned}
4 \pi r^{2} & =616 \\
4 \times \frac{22}{7} \times r^{2} & =616 \\
r^{2} & =\frac{616 \times 7}{4 \times 22}=49 \\
r & =7 \mathrm{~cm}
\end{aligned}
$$

volume of the sphere $=\frac{4}{3} \pi r^{3} 3$

$$
\begin{aligned}
& =\frac{4}{3} \pi \times 7 \times 7 \times 7 \times 3 \\
& =\frac{4}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 \times 7 \\
& =4312 \mathrm{~cm}^{3}
\end{aligned}
$$

Multiple Choice Questions 21

1. D

Volume $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times(10)^{3}$
$=4190.48 \mathrm{~cm}^{3}$
2. B

Surface area $=4 \pi r^{2}$
$=4 \times \frac{22}{7} \times 52$
$=314$
3. C

Volume $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times(2) \times 4$
$=16.76 \mathrm{~cm}^{3}$
4. D

Surface area $=\pi r l+\pi r^{2}$
$=\pi r(l+r)=\frac{22}{7} \times 5(5+7)$
$=188.57 \mathrm{~cm}^{2}$
5. A

Geometry: Congruence and Similarity

Exercise 11

1. (i) congruent
(ii) four
(iii) similar
(iv) congruent
(v) similar
2. (i) False

Reason: Any two triangles are congruent, if their angles and corresponding sides are equal.
(ii) True

Reason: Triangle can be enlarged by increasing the length of tis sides, that will change the area of the triangle.
(iii) False

Reason: Any two triangles are congruent if two sides and included angle are equal.
(iv) True

Reason: Two triangles are similar if all the corresponding angles are equal and corresponding sides are in the same ratio.
(v) False

Reason: Congruent triangles are of the same shape and same size, while similar triangles have same shape but deferent size.
3. $m \angle \mathbf{A}=m \angle \mathbf{Q}$
$m \angle \mathbf{B}=m \angle \mathbf{R}$
$m \angle \mathrm{C}=m \angle \mathrm{P}$
$m \overline{\mathrm{AB}}=m \overline{\mathrm{QR}}$
$m \overline{\mathrm{BC}}=m \overline{\mathrm{RP}}$
$m \overline{\mathrm{CA}}=m \overline{\mathrm{PQ}}$
4. (i) Congruent (SSS)
(ii) Congruent (SAS)
(iii) Not congruent
(iv) Congruent (RHS)
(v) Congruent (ASA)
5. (i) $m \overline{A C}=m \overline{X Z}$ $x=6$
(ii) $m \angle \mathrm{RPQ}=m \angle \mathrm{WUV}$ $x=25^{\circ}$
(iii) $m \angle X Z Y=m \angle$ RTS $a<45^{\circ}$
(iv) $m \angle X Z Y=m \angle B A C$
$x=60^{\circ}$
$m \angle \mathrm{XYZ}=m \angle \mathrm{BCA}$
$y=80^{\circ}$
6. (i) Similar, because the sides are in ratio $1: 2$
(ii) Similar, because ratio of the sides is 1:3
(iii) Not Similar

The ratio of the length of sides is not equal.
(iv) Similar, the ratios of the length of the sides are proportional as 1:2

Multiple Choice Questions 15

1. D
2. C

The case of congruency is ASA.
3. D
$m \angle \mathrm{~S}$ should be equal to $m \angle \mathrm{E}$.
4. D
5. B

Practical Geometry and Transformation

Exercise 12A

1.

Helpful Hint:

(i), (ii) and (iii) follow the same steps of construction.
(i)

$$
m \overline{\mathrm{AB}}=8 \mathrm{~cm}, m \overline{\mathrm{BC}}=6 \mathrm{~cm}, \overline{\mathrm{CA}}=4
$$ cm

Steps of construction:

Step 1: Draw $\overline{\mathrm{AB}}=8 \mathrm{~cm}$.
Step 2: With B as centre draw an arc with radius 6 cm .
Step 3: With A as centre, draw an arc with radius 4 cm .
Step 4: Join C to A and B
$\triangle A B C$ is the required triangle.
(ii) $m \overline{\mathrm{AB}}=10 \mathrm{~cm}, m \overline{\mathrm{BC}}=5 \mathrm{~cm}, \overline{\mathrm{CA}}=8 \mathrm{~cm}$.

(iii) $\overline{\mathrm{AB}}=9 \mathrm{~cm}, m \overline{\mathrm{BC}}=6 \mathrm{~cm}, \overline{\mathrm{CA}}=12 \mathrm{~cm}$

SHelpful Hint:

(iv), (v) and (vi) follow the same steps of construction.
(iv) $m \overline{\mathrm{AB}}=6 \mathrm{~cm}, m \overline{\mathrm{BC}}=9 \mathrm{~cm}, m \angle \mathrm{~B}=60^{\circ}$

Steps of construction:

Steps 1: Draw $m \overline{\mathrm{AB}}=6 \mathrm{~cm}$
Steps 2: At point B, draw $m \angle A B C=60^{\circ}$
Step 3: With B as center, draw an arc of radius 9 cm to cut $\overline{\mathrm{BY}}$ at C .
Step 4: Join A to C.
$\triangle A B C$ is the required triangle.
(v) $m \overline{\mathrm{AB}}=12 \mathrm{~cm}, m \overline{\mathrm{BC}}=8 \mathrm{~cm}$
$m \angle B=30^{\circ}$

(vi) $m \overline{\mathrm{AB}}=8 \mathrm{~cm}, m \overline{\mathrm{BC}}=10 \mathrm{~cm}$, $m \angle B=90^{\circ}$

Helpful Hint:
(vii) and (viii) follow the same steps of construction.
(vii) $m \overline{\mathrm{AB}}=6 \mathrm{~cm}, m \angle \mathrm{~A}=60^{\circ}, m \angle \mathrm{~B}=45^{\circ}$

Steps of construction:

Step 1: Draw $m \overline{\mathrm{AB}}=6 \mathrm{~cm}$ BAY
Step 2: At point A, draw $m \angle B A Y=60^{\circ}$
Step 3: At point B, draw $m \angle A B X=45^{\circ}$
Step 4: Mark point C at the intersection of $\overline{\mathrm{AY}}$ and $\overline{\mathrm{BX}}$.
$\triangle A B C$ is the required triangle.
(viii) $m \overline{\mathrm{AB}}=8 \mathrm{~cm}, m \angle \mathrm{~A} 90^{\circ}, m \angle \mathrm{~B}=60^{\circ}$

(ix) $m \overline{\mathrm{BC}}=5.5 \mathrm{~cm}, m \angle \mathrm{~A}=30^{\circ}, m \angle \mathrm{~B}=$ 90°

Steps of construction:

Step 1: Draw $\overline{B C}=5.5 \mathrm{~cm}$
Step 2: Construct an angle of 90° at B .
Step 3: Since sum of the angles in a triangle is
180°, i.e $\angle B+\angle A+\angle C=180^{\circ}$, Make angle of 60° at C meeting $B L$ at A.
Step 4: Measure $\angle \mathrm{A}$. It will be 30°.
$\triangle A B C$ is the required triangle.
2. Construct the following equilateral triangles:
(i) $m \overline{\mathrm{AB}}=12 \mathrm{~cm}$

Steps of construction:

Step 1: Draw $m \overline{\mathrm{AB}}=12 \mathrm{~cm}$
Step 2: With A as centre, draw an arc with radius 12 cm .
Step 3: With B as centre, draw another arc with radius 12 cm . So that it intersects the previous arc at C .
Step 4: Join C to A and B.
$\triangle A B C$ is the required triangle.
(ii) $m \overline{\mathrm{AB}}=8 \mathrm{~cm}$

Follow the same steps as given in Q4 (i)
(iii) altitude $\overline{C D}=10 \mathrm{~cm}$

Steps of construction:

Step 1: Draw $m \overline{\mathrm{PQ}}=10 \mathrm{~cm}$
Step 2: Mark a point D at the centre $\overline{A B}$.
Step 3: Draw a perpendicular $\overline{\mathrm{DE}}$ on $\overline{\mathrm{AB}}$.
Step 4: With D as centre, draw an arc with radius 10 cm intersecting the perpendicular at C .
Step 5 At C draw two angles of 30° on either side of CD. $m \angle B C D$ and $m \angle \mathrm{ACD}=30^{\circ}$
Step 6: Mark point A and B, where the arms of the angles interest $\overline{\mathrm{PQ}}$.
$\triangle A B C$ is the required equilateral triangle.
(iv) altitude $\overline{\mathrm{CD}}=15 \mathrm{~cm}$

Steps of construction:

Follow the same steps as given in Q4 (iii).
3.

(i) $m \overline{\mathrm{AB}}=8 \mathrm{~cm}, m \angle \mathrm{~A}=65^{\circ}$

Steps of construction:

Step 1: Draw $m \mathrm{AB}=8 \mathrm{~cm}$
Step 2: Construct $m \angle B A C=65^{\circ}$
Step 3: Construct $m \angle A B C=65^{\circ}$
Step 4: Extend the arms of the angles, so that they meet each other at point C.
$\triangle A B C$ is the required triangle.

Follow the steps of construction given in Q5 (i), for (ii), (iii), (iv).
(ii) $m \overline{\mathrm{AB}}=5 \mathrm{~cm}, m \angle \mathrm{~A}=40^{\circ}$

(iii) $m \overline{\mathrm{AB}}=7 \mathrm{~cm}, m \angle \mathrm{~A}=70^{\circ}$

(iv) $m \overline{\mathrm{AB}}=11 \mathrm{~cm}, m \angle \mathrm{~A}=70^{\circ}$

4.

Steps of construction:

Step 1: Draw $\overline{\mathrm{AC}}=4.5 \mathrm{~cm}$
Step 2: With centre C and radius 3.8 cm draw an arc above $\overline{\mathrm{AC}}$.

Step 3: with centre A, draw another arc with the same radius, intersecting the previous arc with at point B .
Step 4: Join A and B. Join B and C. $\triangle A B C$ is the required triangle.

Since, $\triangle A B C$ is an isosceles triangle, its base angle are equal.

$$
\therefore \quad \angle \mathrm{BAC}=\angle \mathrm{ACB}
$$

5.

Steps of construction:

Step 1: Draw $\overline{B C}=4 \mathrm{~cm}$
Step 2: At point B, draw $m \angle A B C=30^{\circ}$
Step 3: With B as centre, draw an arc with radius 3 cm to cut $B X$ at A.

Step 4: Join A to C.
$\triangle A B C$ is the required triangle.
6. Follow the steps of construction as in Q2(i) taking each side $=5 \mathrm{~cm}$
$\triangle A B C$ is an equilateral triangle.
Now, Take D as the centre of $\overline{B C}$.

Join A and D.
Measure $\angle \mathrm{ADB}$.

$$
m \angle \mathrm{ADB}=90^{\circ}
$$

7.

Steps of construction:

Step 1: Draw $\overline{\mathrm{AB}}=5.4 \mathrm{~cm}$
Step 2: Make an angle of 45° at point B.

Step 3: Using a compass cut $\overline{B C}=4.6 \mathrm{~cm}$.
Step 4: Join A and C.
$\triangle A B C$ is the required triangle.
Step 5: Using a pair of compasses draw the angle bisectors at $\angle A, \angle B$, and $\angle C$.
Step 6: Join A and D, B and F, C and E.
Angle bisectors $\overline{\mathrm{AD}}, \overline{\mathrm{BF}}$, and $\overline{\mathrm{CE}}$ pass through the same point O.
8.

Steps of construction:

Step 1: Draw $B C=6 \mathrm{~cm}$.
Step 2: With B as centre and radius 4.5 cm draw an arc above $\overline{B C}$.
Step 3: With C as centre and radius 4.5 cm draw another arc, intersecting the previous arc at point A.
Step 4: Join A to B and A to C.
$\triangle \mathrm{ABC}$ is the required triangle.
Step 5: Mark a point D in the centre of $\overline{B C}$.
Step 6: Join A and D. Measure $\angle A D B$.

$$
\angle A D B=90^{\circ}
$$

9.

Step of construction:

Step 1: Draw $\overline{\mathrm{AB}}=4 \mathrm{~cm}$.
Step 2: Draw $\angle A B L=60^{\circ}$ at point B.
Step 3: With centre B and radius 4 cm draw an aare on BL at C .
$\angle A B C=60^{\circ}$
Step 4: Join A to C.
$\triangle A B C$ is the required triangle.

Exercise 12B

1.

Measurement of the diagonals:
$\mathrm{m} \overline{\mathrm{AC}} 6.9 \mathrm{~cm}$
$\mathrm{m} \overline{\mathrm{BD}}=5.7 \mathrm{~cm}$
Follow the steps given in the book (construction 1) according to the measurements given in the question.
2.

Follow the steps given in the book (construction 1) according to the measurements given in the question.
The other three angles are
$a=97^{\circ}, b=47^{\circ}$, and $\mathrm{c}=156^{\circ}$
\therefore the sum of the angles is

$$
97^{\circ}+47^{\circ}+156^{\circ}=300^{\circ}
$$

3. Let $\overline{\mathrm{AB}}=4.8 \mathrm{~cm}, \overline{\mathrm{BC}}=4.2 \mathrm{~cm}, \mathrm{CD}=3.4 \mathrm{~cm}$ then $\quad \angle B=120^{\circ}, \angle C=45^{\circ}$

Follow the steps given in the book (construction 2) according to the measurements given in the question.
$a=38^{\circ}, d=157^{\circ}$
the sum is $39^{\circ}+157^{\circ}=195^{\circ}$
4. Let following be the sides of the quadrilateral $\overline{\mathrm{AB}}=3.9 \mathrm{~cm}, \overline{\mathrm{BC}}=5 \mathrm{~cm}$, $\overline{C D}=4.7 \mathrm{~cm}$, and $\overline{D A}=4.2 \mathrm{~cm}$

Follow the steps given in the book (construction 3) according to the measurements given in the question.
5.

Follow the steps given in the book (construction 11) according to the measurements given in the question.
$\mathrm{m} \overline{\mathrm{AO}}=2 \mathrm{~cm}$ $m \overline{\mathrm{CO}}=2 \mathrm{~cm}$
yes, both are equal
6. Let $\mathrm{m} \overline{\mathrm{AB}}=3 \mathrm{~cm}$ and $\mathrm{m} \overline{\mathrm{BC}}=4 \mathrm{~cm}$

Follow the steps given in the book (construction 9) according to the measurements given in the question.
Proof :
$A B^{2}+B C^{2}=A C^{2}$,
LHS
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=3^{2}+4^{2}=9+16=25$
RHS
$A C^{2}=5^{2}=25$
Since $\quad L H S=$ RHS
Hence, it is proved that

$$
A B^{2}+B C^{2}=A C^{2}
$$

7.

Follow the steps given in the book (construction 13) according to the measurements given in the question.

$$
\begin{aligned}
& m \overline{\mathrm{AO}}=m \overline{\mathrm{CO}}=m \overline{\mathrm{BO}}=m \overline{\mathrm{DO}}=3 \mathrm{~cm} \\
& m \angle B O C=90^{\circ}
\end{aligned}
$$

8. Let the rhombus be $A B C D$, and its diagonals are $\overline{A C}$ and $\overline{B D}$

9. (i)

Follow the steps given in the book (construction 4) according to the measurements given in the question.
(ii)

Follow the steps given in the book (construction 3) according to the measurements given in the question.
10.

Follow the steps given in the book (construction 11) according to the measurements given in the question.
11.

Follow the steps given in the book (construction 9) according to the measurements given in the question.
12. Let the rectangle be $A B C D$, and $A B=3 \mathrm{~cm}, A C=7 \mathrm{~cm}$

Follow the steps given in the book (construction 10) according to the measurements given in the question.
13.

Follow the steps given in the book (construction 13) according to the measurements given in the question.
14.

Follow the steps given in the book (construction 14) according to the measurements given in the question.
15.

Follow the steps given in the book (construction 12) according to the measurements given in the question.
16.

B
Follow the steps given in the book (construction 15) according to the measurements given in the question.
17.

Follow the steps given in the book (construction 17) according to the measurements given in the question.
18.

Follow the steps given in the book
(construction 17) according to the measurements given in the question.

Exercise 12C

1. (i) Since A is common vertex in both the images, the centre of rotation is A.
To find the angle of rotation, you need to join corresponding vertices of both the images with centre of rotation. In this case they are alreading joined.
Now find out the angle formed by $B A B^{\prime}$ and $C A C '$.
Since the measure of angle is 90°, the angle of rotation is 90 anticlockwise.
(ii) U is the centre of rotation. The angle of rotation is 90° clockwise.
(iii) B is the centre of rotation. The angle of rotation is 180° clockwise.
2. (i) Name the vertices of given shape as A, B, C, D, and E. Join A with origin O.
Make an angle of 90° at point 0 . Mark an arc at the same distance as from O to A, on the line.
This new point is A^{\prime}

Now, repeat above steps for B^{\prime}, C^{\prime}, D^{\prime}, and E^{\prime}.

Join A^{\prime} to $\mathrm{B}^{\prime}, \mathrm{B}^{\prime}$ to $\mathrm{C}^{\prime}, \mathrm{C}^{\prime}$ to $\mathrm{D}^{\prime}, \mathrm{D}^{\prime}$ to E^{\prime}, and E^{\prime} to A^{\prime} to draw the new rotated image.

(ii) Name the vertices of image as A, B, C, D, E, F, G, and H.
Join A to origin O.
Make angle of 180° at O .
Make an arc at the same distance as form O to A on the line This new point is A^{\prime}

Now repeat above steps for $\mathrm{B}^{\prime}, \mathrm{C}$ ', $\mathrm{D}^{\prime}, \mathrm{E}^{\prime}, \mathrm{F}^{\prime}, \mathrm{G}^{\prime}$, and H^{\prime}.

Join A^{\prime} to B^{\prime}, B^{\prime} to C^{\prime}, C^{\prime} to D^{\prime}, D^{\prime} to E^{\prime}, E^{\prime} to F^{\prime}, F^{\prime} to $\mathrm{G}^{\prime}, \mathrm{G}^{\prime}$ to H^{\prime}, and H^{\prime} to A^{\prime}, to draw the new rotated image

3. (i) The centre of enlargement is A. measure the length from A to B. Join A to B and produce the line further.
Since the scale factor is 2 , multiply the measurement of length by 2 and mark a new point B^{\prime} with the measurement.

Repeat above, steps to mark the point C' D'.

Joint A to B^{\prime}, B^{\prime} to C^{\prime}, C^{\prime} to D^{\prime}, and D^{\prime} to A.

(ii) The centre of enlargement is C. Join C to A and produce it further Measure length from C to A and multiply it by 3 .
Make new point A^{\prime} with new length from C.

Repeat above, steps to mark the point B^{\prime}, D^{\prime}, and E^{\prime}.
Join A^{\prime} to B^{\prime}, B^{\prime} to C, C to D^{\prime}, D^{\prime} to E^{\prime}, and E^{\prime} to A^{\prime} to get the new enlarged imaged.

(iii) Given name 'P' to the centre of enlargement.

Join P to A and produce it further. Measure the length from P to A and multiply it by 1.5.
Mark a point A^{\prime} on the line with the calculated measurement.

Repeat above steps to mark the points $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$, and E^{\prime}.
Join A^{\prime} to B^{\prime}, B^{\prime} to C^{\prime}, C^{\prime}, to D^{\prime}, D^{\prime} to E^{\prime}, and E^{\prime} to A^{\prime} to make the enlarged image.

(iv) Draw guidelines from centre of enlargement to each vertex. Insert the same shape with bigger square only.

Measure the length from centre of enlargement to A and multiply it by 0.5 .

Mark A' with calculated measurement.
Repeat for B^{\prime}, C^{\prime}, and D^{\prime}.
Join A to B^{\prime}, B^{\prime} to C^{\prime}, C^{\prime} to D^{\prime}, and D^{\prime} to A^{\prime}.

4. (i) $A B C \rightarrow A B^{\prime} C^{\prime}$

The scale factor is 2 in this case
Since $A B=B B^{\prime}$
hence $A B^{\prime}=2 A B$
The scale factors is 2 .
(ii) $A B C \rightarrow A B^{\prime \prime} C^{\prime \prime}$

The scale factor is 3
(iii) $A B^{\prime} C^{\prime} \rightarrow A B C$

The scale factor is $\frac{1}{2}$
(iv) The scale factor is $\frac{2}{3}$
5. Join A to A^{\prime}, B to B^{\prime}, C to C^{\prime}, and D to D^{\prime}.

The point where all these lines intersect each other is the centre of enlargement. Name the given triangle as $\triangle \mathrm{PQR}$
6. Draw guidelines from C to each vertex of the image.
Produce the lines further.

Measure length from C to P and multiply it by 2.
Make point P^{\prime} with new length.
Repeat the steps for Q^{\prime} and R^{\prime}.

Join P^{\prime} to Q^{\prime}, Q' to R', and R' to P^{\prime} to get the enlarged image.

Multiple Choice Questions 12

1. D
2. B

Since all side lengths are equal hence, triangle is equilateral.
3. A

Since the measurement of one of three angles is 90° hence, the triangle is a right-angled triangle.
4. B

None of the sides are equal in length.
5. A

Data Handling

Exercise 13A

1. (i) Primary data (ii) class intervals
(iii) range
(iv) histogram
(v) mode
2. (i) True
(ii) False

(iii) True
(iv) True
(v) False

Reason: Sum of $f x$ is equal to the sum of the product of data value and its conquering
3. $42-36=6$
$48-42=6$
$54-48=6$
$60-54=6$
\therefore class size is 6
4. Arrange data in ascending order.
2, 5, (6) (7), 11, 17
Median $=\frac{6+7}{2}$

$$
=\frac{13}{2}
$$

$=\frac{13}{2}$

$$
=6.5
$$

5. Since the lowest value is 68 , start the class interval with 60.

Class width $=20$ (given in the question)

Class interval	Frequency
$60 \leq x<80$	5
$80 \leq x<100$	10
$100 \leq x<120$	9
$120 \leq x<140$	4
$140 \leq x<160$	2

6.

Class Interval	Frequency
$10 \leq x<15$	1
$15 \leq x<20$	6
$20 \leq x<25$	4
$25 \leq x<30$	7
$30 \leq x<35$	6
$35 \leq x<40$	6
$40 \leq x<45$	4
$45 \leq x<50$	1

7. Range $=$ highest score - lowest score

$$
\begin{aligned}
& =45-18 \\
& =27
\end{aligned}
$$

Mean $=\frac{\text { sum of values }}{\text { number of values }}$
$\frac{=40+35+24+18+32+22+45+38+30+20}{10}$
$=\frac{304}{10}$
$=30.4$
8. (a) Ages of doctors working in a city

(b)

Age (in years)	No. of doctor	Mid value
$25 \leq x<30$	12	$\frac{25+30}{2}=27.5$
$30 \leq x<35$	15	$\frac{30+35}{2}=32.5$
$35 \leq x<40$	18	$\frac{35+40}{2}=37.5$
$40 \leq x<45$	25	$\frac{40+45}{2}=42.5$
$45 \leq x<50$	10	$\frac{45+50}{2}=47.5$
$50 \leq x<55$	5	$\frac{50+55}{2}=52.5$

9. First ten natural numbers are

$$
\begin{aligned}
\begin{array}{l}
1 \\
\text { Mean }
\end{array} & =\frac{1+2+2+3+4+5+6+7+8+9+10}{10} \\
& =\frac{55}{10} \\
& =5.5
\end{aligned}
$$

10. First eight odd natural numbers are

$$
\begin{array}{rl}
1 & 3
\end{array} \begin{array}{rlrll}
5 & 7 & 9 & 11 & 13
\end{array} 15 \text { (} \begin{aligned}
\text { Mean } & =\frac{1+3+5+7+9+11+13+15}{8} \\
& =\frac{64}{8} \\
& =8 .
\end{aligned}
$$

11. Mean of 15 salaries $=12500$

No. of salaries $=15$
managers salary $=36500$
Mean of 16 salaries $=$?
Mean of 15 salaries $=12500$
$\frac{\text { sum of } 15 \text { salaries }}{15}=12500$
Sum of 15 salaries $=12500 \times 15=187500$

$$
\begin{aligned}
\text { Mean of } 16 \text { salaries } & =\frac{\text { sum of } 16 \text { salaries }}{16} \\
& =\frac{\text { sum of } 15 \text { salaries }+ \text { manager's salary }}{16} \\
& =\frac{187500+36500}{16}=\frac{224000}{16} \\
& =\text { Rs } 14000
\end{aligned}
$$

12. Mean $=\frac{\Sigma f x}{f}$

$$
\begin{aligned}
& =\frac{(4 \times 11)+(3 \times 13)+(7 \times 15)+(16 \times 18)+(4 \times 19)+(3 \times 20)+(2 \times 21)+(1 \times 22)}{4+3+7+16+4+3+2+1} \\
& =\frac{44+39+105+288+76+60+42+22}{40} \\
& =\frac{676}{40}=16.9
\end{aligned}
$$

13. Since class intervals are given instead of actual values, find and the mid value for each that will be served as x.

Kg	No. of students f	Mid value x
$28<x \leq 30$	4	$\frac{28+30}{2}=29$
$30<x \leq 32$	8	$\frac{30+32}{2}=31$
$32<x \leq 34$	10	$\frac{32+34}{2}=33$
$34<x \leq 36$	4	$\frac{34+36}{2}=35$
$36<x \leq 38$	1	$\frac{36+38}{2}=37$
$38<x \leq 40$		$\frac{38+40}{2}=39$

Mean $=\frac{\Sigma f x}{f}=\frac{(4 \times 29)+(8 \times 31)+(10 \times 33)+(5 \times 35)+(4 \times 37)+(39 \times 1)+(1 \times 22)}{4+8+10+5+4+1}$

$$
\begin{aligned}
& =\frac{116+248+330+175+148+39}{32} \\
& =\frac{1056}{32}=33 \mathrm{~kg}
\end{aligned}
$$

14. Mean $=\frac{22+54+100+4+5+29+51+33+8+5+13+85+40+65+5+73+84}{17}$

$$
=\frac{676}{17}=39.76
$$

To find median, arrange the data in ascending order

$$
4,5,5,5,8,13,22,29,33,40,51,54,65,73,84,85,100
$$

The value in the middle is 33 .
Median = 33
Mode $=5 \quad$ (5 is the most occurring value)
15. (i)

Marks	Frequency
$50<x \leq 60$	3
$60<x \leq 70$	5
$70<x \leq 80$	8
$80<x \leq 90$	8
$90<x \leq 100$	6

(ii) $70<x \leq 80$ and $81<x \leq 90$
(iii) $70<x \leq 80$
16. Mean $=\frac{16+16+12+14+13+15+13+13+16+12+15+10}{12}$

$$
=\frac{165}{12}
$$

$=13.75 \mathrm{~mm}$

Helpful Hint

Arrange data in ascending order to determine the median.
$\begin{array}{llllllllllll}10 & 12 & 12 & 13 & 13 & 13 & 14 & 15 & 15 & 16 & 16 & 16\end{array}$
There are two middle values, 13 and 14.
Median $=\frac{13+14}{2}$

$$
\begin{aligned}
& =\frac{27}{2} \\
& =13.5 \mathrm{~mm}
\end{aligned}
$$

$\operatorname{mode}=13$ and 16
17. (a) $10,16,12,15,8,16,10,17,12,14$

$$
\begin{aligned}
& \text { mean }=\frac{\Sigma x}{n} \\
& \text { mean }=\frac{10+16+12+15+8+16+10+17+12+14}{10}=\frac{130}{10}
\end{aligned}
$$

mean = 13
variance

$$
\begin{array}{r}
=(10-13)^{2}+(16-13)^{2}+(12-13)^{2}+(15-13)^{2}+(8-13)^{2}+(16-13)^{2}+(10-13)^{2} \\
+(17-13)^{2}+(12-13)^{2}+(14-13)^{2}
\end{array} 10
$$

$$
=\frac{(-3)^{2}+(3)^{2}+b(-1)^{2}+(2)^{2}+(-5)^{2}+(3)^{2}+(-3)^{2}+(4)^{2}+(-1)^{2}+(1)^{2}}{10}
$$

$$
=\frac{9+9+1+4+25+9+9+16+1+1}{10}
$$

$$
=\frac{84}{10}=8.4
$$

Standard deviation $=\sqrt{8.4}=2.9$
(b) $74,72,83,96,64,79,88,68$

Mean $=\frac{\Sigma x}{n}$
Mean $=\frac{74+72+83+96+64+79+88+68}{8}$
$=\frac{624}{8}=78$
$=(74-78)^{2}+(72-78)^{2}+(83-78)^{2}+(96-78)^{2}+(64-78)^{2}$ $+(79-78)^{2}+(88-78)^{2}+(68-78)^{2}$
$=\frac{(-4)^{2}+(-6)^{2}+(5)^{2}+(18)^{2}+(-14)^{2}+(10)^{2}+(-10)^{2}}{8}$
$=\frac{16+36+25+324+196+1+100+100}{8}$
$=\frac{798}{8}=99.75$

$$
\begin{aligned}
\text { Standard deviation } & =\sqrt{99.75} \\
& =9.99
\end{aligned}
$$

$$
\begin{aligned}
\text { (c) mean } & =\frac{\Sigma x}{n} \\
& =\frac{326+437+374+366+419+424}{6}=\frac{3246}{6} \\
& =391 \\
\text { variance } & =\frac{(326-391)^{2}+(437-391)^{2}+(374-391)^{2}+(366-391)^{2}+(419-391)^{2}+(424-391)^{2}}{6} \\
& =\frac{(-65)^{2}+(46)^{2}+(-17)^{2}+(-25)^{2}+(28)^{2}+(33)^{2}}{6} \\
& =\frac{4225+2116+289+625+784+1089}{6} \\
& =\frac{9128}{6}=1521.33
\end{aligned}
$$

Standard deviation $=\sqrt{1521.33}$

$$
=93.00
$$

Exercise 13B

1. i and iv are examples of independent events.
2. (i) P(yellow) = Number of favourable outcomes
Total number of outcomes

$$
\begin{aligned}
& =\frac{2}{8} \\
& =\frac{1}{4}
\end{aligned}
$$

(ii) $\mathrm{P}($ odd $)=\frac{4}{8}=\frac{1}{2}$
(iii) Numbers greater than $2=\{3,4,5,6,7,8\}$
$P($ greater than 2$)=\frac{6}{8}=\frac{3}{4}$
(iv) Numbers less than $9=\{1,2,3,4,5,6,7,8\}$
$P($ less than 9$)=\frac{8}{8}=1$
3. Experimental probability $=\frac{\text { Number of times event occurs }}{\text { Total number of trials }}$

$$
\begin{aligned}
& =\frac{64}{126} \\
& =\frac{32}{63}
\end{aligned}
$$

4. Experimental probability $=\frac{\text { Number of times event occurs }}{\text { Total number of trials }}$

$$
\begin{aligned}
& =\frac{128}{200} \\
& =\frac{16}{25}
\end{aligned}
$$

5. Experimental probability $P(6)=\frac{24}{60}$

$$
=\frac{2}{5}
$$

6. Experimental probability $\mathrm{P}($ dislike orange juice $)=\frac{118}{200}$

$$
=\frac{59}{100}
$$

7. Sample space $=\{G H, G T, W H, W T, P H, P T\}$

8.

Snacks

Drink		Muffin (M)	Brownie (B)	Crisps (Cr)	Pastry (P)
	Tea (T)	TM	TB	TCr	TP
	Coffee (C)	CM	CB	CCr	CP
	Juice	JM	JB	JCr	JP

9. Peas Carrots

Peas Turnip
Peas Spinach
Carrots Turnip
Carrots Spinach
Turnip Spinach
10. (i)

(ii) $\mathrm{P}(3 \mathrm{H})=\frac{1}{12}$
$\frac{1}{4}$
(iii) P (tail and a prime number) $=\frac{3}{12}=$
11. (i)

(ii) Possibility Diagram is a useful tool in such ' cases.

Box 1

Box 2				
+	1	2	3	5
4	5	6	7	9
5	6	7	8	10
8	9	10	11	13

Encircled results are the required outcomes

$$
P(10)=\frac{2}{12}=\frac{1}{6}
$$

12. (i)

Bag 1 Bag 2 All Possible
score
(ii) $\mathrm{P}(4)=$ Number of favourable outcomes

$$
\begin{aligned}
& \text { Total number of outcomes } \\
& =\frac{2}{9}
\end{aligned}
$$

$$
\text { (iii) } \quad P(5)=\frac{5}{9}
$$

13. (i)

Dice 1

Dice 2

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

(ii) $P(12)=\frac{4}{36}=\frac{1}{9}$
(iil) $P(10$ or more $)=\frac{19}{36}$
(iv) P (even number) $=\frac{27}{36}=\frac{3}{4}$
14. (i)

Spinner 1

Coin

Score	1	2	3	4
Heads	2	3	4	5
Tails	2	4	6	8

(ii) (a) $P(4)=\frac{2}{8}=\frac{1}{4}$
(b) $\mathrm{P}(5$ or more $)=\frac{3}{8}$
(c) $\quad P($ Prime number $)=\frac{4}{8}=\frac{1}{2}$
15. (i)

Spinner 1

Spinner 2

+	1	3	4	5
5	8	8	9	10
6	7	9	10	11
7	8	10	11	12

(ii) (a) $P(8)=\frac{2}{12}=\frac{1}{6}$
(b) $\quad \mathrm{P}($ odd number $)=\frac{5}{12}$
16. (i)

Bag 1

Score	P	G	Y
2	$2 \times 2=4$	$2+1=3$	2
3	$3 \times 2=6$	$3+1=4$	3
4	$4 \times 2=8$	$4+1=5$	4
5	$5 \times 2=10$	$5+1=6$	5

(ii) $P($ multiples of 3$)=\frac{4}{15}$
17. Probability of getting red marble form bag 1 is is given by;
$P($ red $)=\frac{1}{4}$
Probability of getting yellow marble fro bag 2 is given by;
$P($ yellow $)=\frac{1}{4}$
$\therefore \mathrm{P}($ red and yellow $)=\mathrm{P})$ red $) \times \mathrm{P}($ yellow $)$

$$
=\frac{1}{4} \times \frac{1}{4}=\frac{1}{16}
$$

18. $P(3)=\frac{1}{6}$
$P($ even number $)=\frac{3}{6}=\frac{1}{2}$
$\therefore \mathrm{P}(3$ and even number)

$$
\begin{aligned}
& =P(3) \times P(\text { even number }) \\
& =\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}
\end{aligned}
$$

19. $P($ red $)=\frac{5}{20}=\frac{1}{4}$
$P($ red $)=\frac{8}{20}=\frac{2}{5}$
$P($ red or blue $)=P)$ red $)+P($ blue $)$

$$
\begin{aligned}
& =\frac{1}{4}-\frac{2}{5} \\
& ==\frac{5+8}{20}=\frac{13}{20}
\end{aligned}
$$

20. (i)

$$
P(W)=\frac{12}{30}
$$

$$
P(B)=\frac{8}{30}
$$

$P(W$ or $B)=P(W)+P(B)$

$$
\begin{aligned}
& =\frac{12}{30}+\frac{8}{30}=\frac{13}{20} \\
& =\frac{5+8}{20}=\frac{20}{30}=\frac{2}{3}
\end{aligned}
$$

(ii) If 7 cows has no horns then 30-7 = 23 cows have horns.
$\mathrm{P}($ Cows with horns $)=\frac{23}{30}$
(iii) Number of cows of different colours than black or white $=30-20=10$
P (Cow with different colour)

$$
=\frac{10}{30}=\frac{1}{3}
$$

OR P(Cow with different colour)

$$
\begin{aligned}
& =1-P(W \text { or } B) \\
& =1-\frac{2}{3}=\frac{1}{3}
\end{aligned}
$$

Multiple Choice Questions 13

(1) A
(2) B
(3) B
(4) D
(5) D

Answers:
 Model Assessment Papers

Model Paper 1: Mid-Year Examination
1.

I. C	II. A	III. A	IV. C
V. D	VI. D	VII. D	VIII. D
IX. A	X. B	XI. B	XII. A
XIII. C	XIV. C	XV. D	XVI. D
XVII. C	XVIII. B	XIX. A	XX. C

2b) \{Guavas, apples, mangoes, peaches\}, \{mangoes and peaches\}
2c) 1.6
3a) $\frac{1}{2}$
3b) 1
3c) 8.3
4a) 5
4b) $\log _{x} a b=\log _{x} a+\log _{x} b$
4c) 3
5a) Rs 3000
5b) 12%
5c) 39
6a) US\$ 90
6b) Perpendicular bisector of line $A B$ Angle bisector of angle ABC

7b) Rs 20 above par
7c) Rs 6000
8a) 6.25
8b) 42 rows
8c) 14 cm
9a) Rs 475
9b) 1000011
9c) 1013
10a) 12.5 years

10b) 720
10c) 5\%
11a) i) $A \cup(B \cup C)=(A \cup B) \cup C$
11b) 10101002
11c) 98

Model Paper 2: Mid-Year Examination
1.
II. C
V. A
IX. B
XIII. C XIV.D XV. D XVI. B
XVII.D XVIII. B XIX. C XX. A

2a) $P(A)=8$
2b) $\frac{1}{625}$
2c) $16 a+6 b$
3a)

3b) 2.5
3c) 5
3d) $25-x$
4a) 15 pipes
4b) 11.11%
5a) $5 \sqrt[8]{23}$
5b) 85
5c) 11112
6a) 2

6b) Rs 1650
6c) Rs 4000
7b) 50 men
7c) 9
8a) $(A \cup B) \cap(A \cup C)$
8c) Rs 1000
9a) 2 m
9b) Rs 35000
9c) $n=5$
10a) 1000001
10b) 100012
10c) 3.33%
11a) 41.7
11b) 1
11c) $50 \mathrm{~km} / \mathrm{hr}$

Model Paper 1: Annual Examination

1.

I. C	II. B	III. B	IV. D
V. C	VI. A	VII. C	VIII. C
IX. A	X. B	XI. B	XII. D
XIII. B	XIV. A	XV. A	XVI. B
XVII. D	XVIII. B	XIX. D	XX. A

2a) $x+y=31, x-y=5$
2b) Sarim's age: 18 years, Umair's age: 13 years
2c) $\frac{x+1}{x^{2}+x+1}$
3a) $\frac{5 x}{2}$
3b) 84
3c) Rs 24, Rs 60
3d) - 1
4a) green yellow blue
4b) $\quad\left[\begin{array}{ccr|l}2 & 1 & 3 & \text { circle } \\ 1 & 2 & 1 & \text { triangle } \\ 2 & 1 & 1 & \text { rectangle } \\ \text { cirale } & \text { triananle } & \text { rectajaginentengagisn }\end{array}\right.$
$\left[\begin{array}{llll}2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 3 \\ 3 & 1 & 1 & 1\end{array}\right]$ green yellow blue

4c) $\operatorname{Rs} 4500$
5a) $\sqrt[50]{3} \mathrm{~m}$
5b) $\frac{7}{5}$
6a) 30-35
6b) 7, 25000-30000
7a) $60 a+120 b=420$
7b) $100 a+120 b=540$
7c) Jahangir: 3 glasses, Laraib: 2 glasses
7d) $\quad[2(m+n)-3(a+b)]^{2}$
8a) 125 km
8b) $\left[\begin{array}{cc}2 & 3 \\ 13 & 2\end{array}\right]$
8c) $B+6$
9a) 6 cm
9b) $288 \pi \mathrm{~cm}^{3}$
9c) 8
10c) $27 a^{3}-54 a^{2}+36 a-8$
11a) $\frac{1}{x^{2}}-4$

Model Paper 2: Annual Examination

1.

I. C
II. B
III. C
IV. B
V. C
VI. D
VII. C
VIII. A
IX. C
X. C
XI. C
XII. D
XIII. A XIV. B XV.C XVI. C
XVII. B XVIII. B XIX. C XX. C

2a) $A=$ Male Female
 $B=$ Male Female $\left[\begin{array}{ll|l}12 & 3 & \text { Karachi office } \\ 11 & 1 & \text { Islamabad office }\end{array}\right.$
2c) $15 \pi \mathrm{~cm}^{2}$
university press

3a) 100 cm
3b) $8 x^{3}+6 x^{2} y+6 x y^{2}+y^{3}$
3c) $\sqrt[3]{1728}$
4a) $y(y+1)(y+2)$
4b) $y^{3}+3 y^{2}+2 y$
4c) $9240 \mathrm{~m}^{3}$
5a) Rs 51
5b) Rs 153000
5c) Rs 2300
6a) 0
7a) $x^{2}+2 x y+y^{2}$
7b) - 27
7c) $\frac{3}{7}$
8a) 11.15
8b) 1
9a) $45 \pi \mathrm{~cm}^{3}$
10a) $b=\operatorname{Rs} 85$, $a=\operatorname{Rs} 50$
11b) (i) $\mathrm{Hyp}=\sqrt{2}$
(ii) $\mathrm{m} \angle \mathrm{CAB}=45^{\circ}$
(iii) 45°

Model Paper 3: Annual Examination

1.

I. A	II. B	III. B	IV. C
V. A	VI. A	VII. A	VIII. A
IX. B	X. C	XI. A	XII. A
XIII. C	XIV. A	XV. D	XVI. C
XVII. A	XVIII. B	XIX. B	XX. C

2a) $8 x^{3}-4 x^{2} y+2 x y^{2}-y^{3}$
2b) 20°
2c) 17.5
3a) 10201
3b) $(x-4)(x-1)$
4a) z^{6}
4b) trees rose plant $\left.\left[\begin{array}{ll}5 & 6 \\ 6\end{array}\right] \begin{array}{l}\text { Monday } \\ 4\end{array}\right] \begin{aligned} & \text { Tuesday }\end{aligned}$

4c) Monday
5a) $(x+4)(x+5)(x+6)$
5b) $x^{3}+15 x^{2}+74 x+120$
5c) 346
6a) $176 \mathrm{~cm}^{2}$
7a) $y=300, x=700$
7b) $a^{3}+2 a^{2}+4 a$
8a) Rs 165375
8b) $785 \mathrm{~cm}^{3}$
9b) $2 \sqrt{3} \mathrm{~m}$
9c) $\frac{1}{4}$
10a) 16.66%
10b)

Scores (x)	frequency (f)	$f x$
3	0	
1	4	4
2	5	10
3	6	18
4	1	4
5	2	10

10c) 2.2

